Research of the photocatalytic activity of nano-sized powder and fiber based on nickel-zinc ferrite
- 作者: Ivanin S.N.1,2, Buz’ko V.Y.1,3, Yakupov R.P.1, Suhno I.V.2
-
隶属关系:
- Kuban State University
- Kuban State Agrarian University named after. I.T. Trubilina
- Kuban State Technological University
- 期: 卷 69, 编号 5 (2024)
- 页面: 720-726
- 栏目: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://cijournal.ru/0044-457X/article/view/666536
- DOI: https://doi.org/10.31857/S0044457X24050093
- EDN: https://elibrary.ru/YEXKLX
- ID: 666536
如何引用文章
详细
Nano-sized powder and nanostructured fibers of nickel-zinc ferrite with the composition Ni0.5Zn0.5Fe2O4 were synthesized. By means of X-ray diffraction analysis, it was proven that the synthesized samples correspond to the nickel-zinc ferrite phase. Based on the data obtained, it was established that fibers based on nickel-zinc ferrite have a higher value of the crystal lattice parameter and crystallite size than the synthesized nano-sized powder. SEM data confirm that the samples under study consist of nanosized particles: 20–60 nm for powder and 20–40 nm for fibers. The optical diffuse reflection method was used to determine the band gap for Ni0.5Zn0.5Fe2O4 samples, which was 1.58 eV for fibers and 1.67 eV for powder. The photocatalytic degradation of methylene blue under the action of Ni0.5Zn0.5Fe2O4 samples of various morphologies has been studied. It was determined that a sample of nanostructured Ni0.5Zn0.5Fe2O4 fibers has greater photocatalytic activity, since the degree of degradation of methylene blue was 26% for nanofibers and 18% for nanopowder.
作者简介
S. Ivanin
Kuban State University; Kuban State Agrarian University named after. I.T. Trubilina
编辑信件的主要联系方式.
Email: ivanin18071993@mail.ru
俄罗斯联邦, Krasnodar; Krasnodar
V. Buz’ko
Kuban State University; Kuban State Technological University
Email: ivanin18071993@mail.ru
俄罗斯联邦, Krasnodar; Krasnodar
R. Yakupov
Kuban State University
Email: ivanin18071993@mail.ru
俄罗斯联邦, Krasnodar
I. Suhno
Kuban State Agrarian University named after. I.T. Trubilina
Email: ivanin18071993@mail.ru
俄罗斯联邦, Krasnodar
参考
- Silva E.D.N., Brasileiro I.L.O., Madeira V.S. et al. // J. Environ. Chem. Eng. 2020. V. 8. P. 104132. https://doi.org/10.1016/j.jece.2020.104132
- Dehghani F., Hashemian S., Shibani A. // J. Ind. Eng. Chem. 2017. V. 48. P. 36. https://doi.org/10.1016/j.jiec.2016.11.022
- Šutka A., Gross A. // Sens. Actuators B. 2016. V. 222. P. 95. https://doi.org/10.1016/j.snb.2015.08.027
- Beyki M.H., Ganjbakhsh S.E., Minaeian S. et al. // Carbohydr. Polym. 2017. V. 15. P. 128. https://doi.org/10.1016/j.carbpol.2017.06.056
- Zhang W., Zhou P., Liu W. et al. // J. Mol. Liq. 2020. V. 315. P. 113682. https://doi.org/10.1016/j.molliq.2020.113682
- Kumar R., Jasrotia R., Himanshi P. et al. // Inorg. Chem. Commun. 2023. V. 157. P. 111355. https://doi.org/10.1016/j.inoche.2023.111355
- Li Y., Li Y., Xu X. et al. // Chem. Geol. 2019. V. 504. P. 276. https://doi.org/10.1016/j.chemgeo.2018.11.022
- Jadhav S.A., Somvanshi S.B., Khedkar M.V. et al. // J. Mater. Sci. Mater. Electron. 2020. V. 31. P. 11352. https://doi.org/10.1007/s10854-020-03684-1
- Jacinto M.J., Ferreira L.F., Silva V.C. // J. Sol. Gel Sci. Technol. 2020. V. 96. P. 1. https://doi.org/10.1007/s10971-020-05333-9
- Manohar A., Chintagumpala K., Kim K.H. // Ceram. Int. 2021. V. 47. P. 7052. https://doi.org/10.1016/j.ceramint.2020.11.056
- Rosales-Gonzalez O., Bolarín-Miro A.M., Cortes-Escobedo C.A. et al. // Ceram. Int. 2022. V. 49. № 4. P. 6006. https://doi.org/10.1016/j.ceramint.2022.10.101
- Reddy D.H.K., Yunang Y.-S. // Coord. Chem. Rev. 2016. V. 315. P. 90. https://doi.org/10.1016/j.ccr.2016.01.012
- Hammad A.B.A., Hemdan B.A., Nahrawy A.M.E. // J. Environ. Manage. 2020. V. 270. P. 110816. https://doi.org/10.1016/j.jenvman.2020.110816
- Kefeni K.K., Mamba B.B. // Sustain. Mater. Technol. 2020. V. 23. P. e00140. https://doi.org/10.1016/j.susmat.2019.e00140
- Sharma S.S., Dutta V., Raizada P. // J. Environ. Chem. Eng. 2021. V. 9. P. 105812. https://doi.org/10.1016/j.jece.2021.105812
- Susmita P., Amarjyoti C. // Appl. Nanosci. 2014. V. 4. P. 839. https://doi.org/10.1007/s13204-013-0264-3
- Estrada-Flores S., Martínez-Luévanos A., Perez-Berumen C.M. // Bol. Soc. Espan. Ceram. Vid. 2020. V. 59. № 5. P. 209. https://doi.org/10.1016/j.bsecv.2019.10.003
- Martinson K.D., Belyak V.E., Sakhno D.D. // Nanosystems: Phys., Chem., Math. 2021. V. 12. № 6. P. 792. https://doi.org/10.17586/2220-8054-2021-12-6-792-798
- Liu Y., Li Z., Green M. // J. Phys. D: Appl. Phys. 2017. V. 50. № 19. P. 193003. https://doi.org/10.1088/1361-6463/aa6500
- Paromova А.А., Sinitsina А.А., Boitsova Т.B. et al. // Russ. J. Gen. Chem. 2023. V. 93. № 2. P. 345. https://doi.org/10.1134/S1070363223020159
- Садовников А.А., Нечаев Е.Г., Бельтюков А.Н. и др. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 432. https://doi.org/10.31857/S0044457X2104019X
- Lavand A.B., Bhatu M.N., Malghe Y.S. // J. Mater. Res. Technol. 2018. V. 8. № 1. P. 299. https://doi.org/10.1016/j.jmrt.2017.05.019
- Nabiyouni G., Ghanbari D., Ghasemi J. // J. Nano Struct. 2015. V. 5. № 3. P. 289. https://doi.org/ 10.7508/jns.2015.03.011
- Mohd Q., Khushnuma A., Braj R.S. et al. // Spectrochim. Acta Part A. 2015. V. 137. P. 1348. https://doi.org/10.1016/j.saa.2014.09.039.
- Shamray I.I., Buz’ko V.Yu., Goryachko A.I. // IOP Conf. Ser.: Mater. Sci. Eng. 2020. V. 969. P. 012101. https://doi.org/10.1088/1757-899X/969/1/012101
- Buz’ko V.Yu., Shamrai I.I., Ryabova M.Yu. et al. // Inorg. Mater. 2021. V. 57. № 1. P. 38. https://doi.org/10.1134/S0020168521010027
- Yan L., Yue M., Shaofeng Z. et al. // Asian J. Chem. 2013. V. 25. № 10. P. 5781. https://doi.org/10.14233/ajchem.2013.OH89
- Ma W., Wang N., Yang L. // J. Mater. Sci. Mater. Electron. 2019. V. 30. P. 20432. https://doi.org/10.1007/s10854-019-02382-x
- Nag S., Ghosh A., Das D. et al. // Synth. Met. 2020. V. 267. P. 116459. https://doi.org/10.1016/j.synthmet.2020.116459
- Chehade W., Basma H.M., Abdallah A. et al. // Ceram. Int. 2022. V. 48. № 1. P. 1238. https://doi.org/10.1016/j.ceramint.2021.09.209
- Dhiman P., Rana G., Dawi E.A. et al. // Water. 2023. V. 15. P. 187. https://doi.org/10.3390/w15010187
- Liu R., Zhang Y., Li H. et al. // J. Nanosci. Nanotechnol. 2015. V. 15. № 6. P. 4574. https://doi.org/10.1166/jnn.2015.9773
- Yang X., Wang Z., Jing M. et al. // Water, Air, Soil Pollut. 2014. V. 225. P. 1819. https://doi.org/10.1007/s11270-013-1819-3
- Martinson K.D., Sakhno D.D., Belyak V.E. et al. // Nanosystems: Phys., Chem., Math. 2020. V. 11. № 5. P. 595. https://doi.org/10.17586/2220-8054-2020-11-5-595-600.
- Martinson K.D., Beliaeva A.D., Sakhno D.D. et al. // Water. 2022. V. 14. P. 454. https://doi.org/10.3390/w14030454
- Vyzulin S.A., Kalikintseva D.A., Miroshnichenko E.L. et al. // Bull. Russ. Acad. Sci: Phys. 2018. V. 82. № 11. P. 1451. https://doi.org/10.3103/S1062873818110242
- Vyzulin S.A., Kalikintseva D.A., Miroshnichenko E.L. et al. // Bull. Russ. Acad. Sci: Phys. 2018. V. 82. № 8. P. 943. https://doi.org/10.3103/S1062873818080439
- Kalikintseva D.A., Buz’ko V.Y., Vyzulin S.A. et al. // Izvest. Ross. Akad. Nauk. Ser. Fizich. 2021. V. 85. № 1. P. 112. https://doi.org/10.31857/S0367676521010142
- Surendran P., Lakshmanan A., Sakthy Priya S. et al. // Appl. Phys. A. 2020. V. 126. P. 257. https://doi.org/10.1007/s00339-020-3435-6
- Якупов Р.П., Бузько В.Ю., Иванин С.Н., Панюшкин В.Т. Пат. RU 2802465 Cl. 29.08.2023.
- Makula P., Pacia M., Macyk W. // J. Phys. Chem. Lett. 2018. V. 9. P. 6814. https://doi.org/10.1021/acs.jpclett.8b02892
补充文件
