Hydrothermal synthesis of vo2 films from alcohol solution

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

M phase vanadium dioxide was firstly synthesized with alcohol as the media instead of water via a simple hydrothermal method on single-crystal r-sapphire substrates. The resulting materials demonstrate a sharp dielectric-metal transition with a change in electrical resistance of about 4 orders of magnitude near the phase transition temperature (68°C). The conditions for synthesizing films comparable in electrophysical characteristics to analogs obtained in aqueous media are established. The proposed method enlarges possibilities for the hydrothermal synthesis of film oxide materials

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

О. Boytsova

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: boytsovaov@my.msu.ru
Ресей, Moscow

А. Tatarenko

Lomonosov Moscow State University

Email: boytsovaov@my.msu.ru
Ресей, Moscow

V. Chendev

Lomonosov Moscow State University; Plekhanov Russian Economic University

Email: boytsovaov@my.msu.ru
Ресей, Moscow; Moscow

A. Makarevich

Lomonosov Moscow State University

Email: boytsovaov@my.msu.ru
Ресей, Moscow

I. Roslyakov

Lomonosov Moscow State University

Email: boytsovaov@my.msu.ru
Ресей, Moscow

О. Makarevich

Lomonosov Moscow State University

Email: boytsovaov@my.msu.ru
Ресей, Moscow

Әдебиет тізімі

  1. Chen C., Yi X., Zhao X. et al. // Sens. Actuators, A: Phys. 2001. V. 90. № 3. P. 212. https://doi.org/10.1016/S0924-4247(01)00495-2
  2. Cui Y., Ke Y., Liu C. et al. // Joule. 2018. V. 2. № 9. P. 1707. https://doi.org/10.1016/j.joule.2018.06.018
  3. Ma H., Wang Y., Lu R. et al. // J. Mater. Chem. C. 2020. V. 8. № 30. P. 10213. https://doi.org/10.1039/d0tc02446e
  4. Ivanov A.V., Makarevich O.N., Boytsova O.V. et al. // Ceram. Int. 2020. V. 46. № 12. P. 19919. https://doi.org/10.1016/j.ceramint.2020.05.058
  5. Makarevich O.N., Ivanov A.V., Gavrilov A.I. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 3. P. 299. https://doi.org/10.1134/S0036023620030080
  6. Li B., Tian S., Wang Z. et al. // Appl. Surf. Sci. 2021. V. 568. № May. P. 150959. https://doi.org/10.1016/j.apsusc.2021.150959
  7. Ji H., Liu D., Cheng H. et al. // J. Mater. Chem. C. 2018. V. 6. № 10. P. 2424. https://doi.org/10.1039/C8TC00286J
  8. Zhao X.Q., Kim C.R., Lee J.Y. et al. // Appl. Surf. Sci. 2009. V. 255. № 8. P. 4461. https://doi.org/10.1016/j.apsusc.2008.11.051
  9. Podlogar M., Richardson J.J., Vengust D. et al. // Adv. Funct. Mater. 2012. V. 22. № 15. P. 3136. https://doi.org/10.1002/adfm.201200214
  10. Ganin A.Y., Kienle L., Vajenine G.V. // 2004. V. 16. P. 3233. https://doi.org/10.1002/ejic.200400227
  11. Jiang M., Zhao M., Li J. // Adv. Mater. Res. 2011. V. 284–286. P. 2177. https://doi.org/10.4028/www.scientific.net/AMR.284-286.2177
  12. Bykov M., Bykova E., Ponomareva A.V. et al. // Angew. Chem. Int. Ed. 2021. V. 60. P. 9003. https://doi.org/10.1002/anie.202100283
  13. Ivanov A.V., Tatarenko A.Y., Gorodetsky A.A. et al. // ACS Appl. Nano Mater. 2021. V. 4. № 10. P. 10592. https://doi.org/10.1021/acsanm.1c02081
  14. Yin S., Hasegawa T. // KONA Powder Part. J. 2023. V. 2023. № 40. P. 94. https://doi.org/10.14356/kona.2023015
  15. Shvets P., Dikaya O., Maksimova K. et al. // J. Raman Spectrosc. 2019. V. 50. № 8. P. 1226. https://doi.org/10.1002/jrs.5616
  16. Ureña-Begara F., Crunteanu A., Raskin J.P. // Appl. Surf. Sci. 2017. V. 403. P. 717. https://doi.org/10.1016/j.apsusc.2017.01.160
  17. Marini C., Arcangeletti E., Castro D.Di et al. // Phys. Rev. B. 2008. V. 77. P. 235111. https://doi.org/10.1103/PhysRevB.77.235111
  18. Makarevich A.M., Sobol A.G., Sadykov I.I. et al. // J. Alloys Compd. 2021. V. 853. P. 157214. https://doi.org/10.1016/j.jallcom.2020.157214
  19. Makarevich A.M., Sadykov I.I., Sharovarov D.I. et al. // J. Mater. Chem. C. 2015. V. 3. № 35. P. 9197. https://doi.org/10.1039/c5tc01811k
  20. Yakovkina L.V., Mutilin S.V., Prinz V.Y. et al. // J. Mater. Sci. 2017. V. 52. № 7. P. 4061. https://doi.org/10.1007/s10853-016-0669-y

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Diffraction patterns of VO2 films obtained in an alcohol solution at different concentrations of the precursor mixture on substrates made of single-crystal r-sapphire under hydrothermal conditions.

Жүктеу (239KB)
3. Fig. 2. Raman spectra of VO2 films obtained in an alcohol solution at different concentrations of the precursor mixture on substrates made of single-crystal r-sapphire under hydrothermal conditions.

Жүктеу (232KB)
4. Fig. 3. SEM images of VO2 films obtained in an alcohol solution at different concentrations of the precursor mixture on substrates made of single-crystal r-sapphire under hydrothermal conditions.

Жүктеу (386KB)
5. Fig. 4. Temperature dependences of the resistance change of VO2 films obtained in an alcohol solution at different concentrations of the precursor mixture on substrates made of single-crystal r-sapphire under hydrothermal conditions. The dependence of the electrical resistance for a sample obtained in an aqueous solution is given as a comparison sample.

Жүктеу (216KB)

© Russian Academy of Sciences, 2025