AACVD synthesis of bilayer thin-film ZnO/Cr₂O₃ nanocomposites for chemoresistive gas sensors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using aerosol-assisted vapor deposition (AACVD), bilayer ZnO/Cr₂O₃ thin-film nanocomposites were prepared and validated using various physicochemical analysis techniques. The thermal behavior of precursors: zinc and chromium acetylacetonates was studied using TGA/DSC. The chemical composition of the obtained coatings was confirmed by EDX method, and the physical composition was confirmed by X-ray diffraction and Raman spectroscopy. The microstructural features were studied by SEM method. It was found that by varying the precursor concentration it is possible to change the morphology of the obtained coatings from an island structure to a continuous film. It is shown that ZnO/Cr₂O₃ bilayer films demonstrate a noticeable chemoresistive response in acetone detection.

Full Text

Restricted Access

About the authors

A. S. Mokrushin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: artyom.nano@gmail.com
Russian Federation, Moscow, 119991

S. A. Dmitrieva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Mendeleev Russian University of Chemical Technology

Email: artyom.nano@gmail.com
Russian Federation, Moscow, 119991; Moscow, 125047

Y. M. Gorban

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Mendeleev Russian University of Chemical Technology

Email: artyom.nano@gmail.com
Russian Federation, Moscow, 119991; Moscow, 125047

A. R. Stroikova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Mendeleev Russian University of Chemical Technology

Email: artyom.nano@gmail.com
Russian Federation, Moscow, 119991; Moscow, 125047

N. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: artyom.nano@gmail.com
Russian Federation, Moscow, 119991

A. A. Averin

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: artyom.nano@gmail.com
Russian Federation, Moscow, 119071

E. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: artyom.nano@gmail.com
Russian Federation, Moscow, 119991

References

  1. Damianos D., Mouly J., Delbos P. Status of the MEMS industry 2021 //“Status of the MEMS industry” Yole development. – 2021.
  2. Deng Y. // Semiconducting Metal Oxides for Gas Sensing. Elsеvier, 2019. https://doi.org/10.1007/978-981-13-5853-1
  3. Seiyama T., Kagawa S. // Anal. Chem. 1966. V. 38. № 8. P. 1069.https://doi.org/10.1021/ac60240a031
  4. Abegunde O.O., Akinlabi E.T., Oladijo O.P. et al. // AIMS Mater. Sci. 2019. V. 6. № 2. P. 174.https://doi.org/10.3934/matersci.2019.2.174
  5. Sun L., Yuan G., Gao L. et al. // Nature Rev. Methods Primers. 2021. V. 1. № 1.https://doi.org/10.1038/s43586-020-00005-y
  6. Kuzminykh Y., Dabirian A., Reinke M. et al. // Surf. Coat. Technol. 2013. V. 230. P. 13.https://doi.org/10.1016/j.surfcoat.2013.06.059
  7. Hou X., Choy K.L. // Chem. Vap. Deposition. 2006. V. 12. № 10. P. 583.https://doi.org/10.1002/cvde.200600033
  8. Jeong S.Y., Kim J.S., Lee J.H. // Adv. Mater. 2020. V. 32. № 51. P. 2002075.https://doi.org/10.1002/adma.202002075
  9. Ahmad R., Majhi S.M., Zhang X. et al. // Adv. Colloid Interface Sci. 2019. V. 270. P. 1.https://doi.org/10.1016/j.cis.2019.05.006
  10. Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // J. Alloys Compd. 2024. V. 1009. P. 176856.https://doi.org/10.1016/j.jallcom.2024.176856
  11. Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // Ceram. Int. 2023. V. 49. № 11. Part A. P. 17600.https://doi.org/10.1016/j.ceramint.2023.02.126
  12. Sinha M., Neogi S., Mahapatra R. et al. // Sens. Actuators, B: Chem. 2021. V. 336. P. 129729.https://doi.org/10.1016/j.snb.2021.129729
  13. Mokrushin A.S., Gorban Y.M., Averin A.A. et al. // Biosensors. 2023. V. 13. № 445. P. 1.https://doi.org/10.3390/bios13040445
  14. Mokrushin A.S., Gorban Y.M., Averin A.A. et al. // Ceram. Int. 2024. V. 50. № 6. P. 8777.https://doi.org/10.1016/j.ceramint.2023.12.194
  15. Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Micromachines. 2023. V. 14. № 725. P. 1.https://doi.org/10.3390/mi14040725
  16. Woo H.S., Na C.W., Kim I.D. et al. // Nanotechnology. 2012. V. 23. № 24. P. 245501.https://doi.org/10.1088/0957-4484/23/24/245501
  17. Jayababu N., Poloju M., Reddy M.V.R. // AIP Conf. Proc. 2019. V. 2082. № March. P. 3.https://doi.org/10.1063/1.5093843
  18. Park S., Sun G.J., Jin C. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 4. P. 2805.https://doi.org/10.1021/acsami.5b11485
  19. Najafi V., Zolghadr S., Kimiagar S. // Optik. 2019. V. 182. P. 249.https://doi.org/10.1016/j.ijleo.2019.01.015
  20. Wang T. yang, Li Y. yuan, Li T. tian et al. // Solid State Ionics. 2018. V. 326. P. 173.https://doi.org/10.1016/j.ssi.2018.10.006
  21. Kamalianfar A., Naseri M.G., Jahromi S.P. // Chem. Phys. Lett. 2019. V. 732. P. 136648.https://doi.org/10.1016/j.cplett.2019.136648
  22. Selvaraj B., Karnam J.B., Rayappan J.B.B. // Ceram. Int. 2023. V. 49. № 23. P. 37106.https://doi.org/10.1016/j.ceramint.2023.08.308
  23. Al-Hardan N.H., Abdullah M.J., Aziz A.A. // Appl. Surf. Sci. 2013. V. 270. P. 480.https://doi.org/10.1016/j.apsusc.2013.01.064
  24. Abdul Kareem S.M., Suhail M.H., Adehmash I.K. // Iraqi J. Sci. 2021. V. 62. № 7. P. 2176.https://doi.org/10.24996/ijs.2021.62.7.7
  25. Vallejos S., Pizúrová N., Gràcia I. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 48. P. 33335.https://doi.org/10.1021/acsami.6b12992
  26. Roy A., Sood A.K. // Pramana: J. Phys. 1995. V. 44. № 3. P. 201.https://doi.org/10.1007/BF02848471
  27. Šćepanović M., Grujić-Brojčin M., Vojisavljević K. et al. // J. Raman Spectroscopy. 2010. V. 41. № 9. P. 914.https://doi.org/10.1002/jrs.2546
  28. Gomes A.S.O., Yaghini N., Martinelli A. et al. // J. Raman Spectroscopy. 2017. V. 48. № 10. P. 1256.https://doi.org/10.1002/jrs.5198
  29. Chen M., Wang Z., Han D. et al. // J. Phys. Chem. C. 2011. V. 115. № 26. P. 12763.https://doi.org/10.1021/jp201816d

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Thermal analysis data. DSC/TGA thermograms of zinc acetylacetonate in air flow at 20–1000°C (a); argon at 20–500°C (b); chromium acetylacetonate in air flow at 20–1000°C (c); argon at 20–500°C (d).

Download (443KB)
3. Fig. 2. X-ray diffraction patterns of ZnO/Cr₂O₃ nanocomposite films on glass substrates.

Download (213KB)
4. Fig. 3. Raman spectra of films on substrates made of Al₂O₃ nanocomposites ZnO/Cr₂O₃ (a) and individual Cr₂O₃ (b).

Download (328KB)
5. Fig. 4. SEM micrographs of films on Al₂O₃ substrates of ZnO/Cr₂O₃ nanocomposites (a–c) and individual Cr₂O₃ (d–f).

Download (1MB)
6. Fig. 5. Selectivity diagrams of ZnO/Cr₂O₃ nanocomposite films at 150–250°C to various gases (10 ppm NH₃, C₆H₆, C₃H₆O, C₂H₅OH, NO₂ and 1000 ppm H₂, CH₄): a – Z1Cr, b – Z2Cr, c – Z5Cr.

Download (464KB)
7. Fig. 6. Responses to 4–100 ppm of acetone (a); dependence of the response value on the acetone concentration (b); signal reproducibility when detecting 20 ppm of ZnO/Cr₂O₃ nanocomposite films at 200°C (c).

Download (808KB)

Copyright (c) 2025 Russian Academy of Sciences