Dechlorination of chloride-sulfate solutions using ozone
- Authors: Levanov A.V.1, Orudzhev A.O.2, Isaikina O.Y.1
-
Affiliations:
- M. V. Lomonosov Moscow State University, Department of Chemistry
- Branch of M. V. Lomonosov Moscow State University in Baku
- Issue: Vol 99, No 2 (2025)
- Pages: 237-242
- Section: ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ
- Submitted: 19.06.2025
- Published: 20.05.2025
- URL: https://cijournal.ru/0044-4537/article/view/685273
- DOI: https://doi.org/10.31857/S0044453725020088
- EDN: https://elibrary.ru/DDWAOI
- ID: 685273
Cite item
Abstract
The kinetic characteristics of the chlorine release reaction during oxidation of chloride ion in solutions of Na+ – H+ – HSO4– – Cl–, Mg2+ – H+ – HSO4– – Cl–, Zn2+ – H+ – HSO4– – Cl–, Cu2+ – H+ – HSO4– – Cl–, Fe3+ – H+ – HSO4– – Cl–, Mg2+ – H+ – Cl–, Ca2+ – H+ – Cl– are found. Under similar experimental parameters, the reaction rate takes significantly different values depending on the nature of the added salt. This is due to the possibility of catalyzing the reaction of O3 with Cl–(aq) cations of some metals and the formation of chloride and sulfate metal complexes, which leads to changes in the actual concentrations of reagents, as well as changes in the ozone solubility. For aqueous solutions of zinc sulfate and magnesium sulfate with concentrations of 0–1 M at temperatures of 20 and 25°C, ozone solubility, values of the Henry constant and Sechenov coefficient are found.
Keywords
Full Text

About the authors
A. V. Levanov
M. V. Lomonosov Moscow State University, Department of Chemistry
Author for correspondence.
Email: levanovav@my.msu.ru
Department of Chemistry
Russian Federation, MoscowA. O. Orudzhev
Branch of M. V. Lomonosov Moscow State University in Baku
Email: levanovav@my.msu.ru
Azerbaijan, Baku
O. Y. Isaikina
M. V. Lomonosov Moscow State University, Department of Chemistry
Email: levanovav@my.msu.ru
Department of Chemistry
Russian Federation, MoscowReferences
- Lowe J.B. // Corrosion. 1961 V. 17. № 3. P. 26.
- Wilkinson R.G. // Platinum Metals Rev. 1961. V. 5. № 4. P. 128.
- Kolman D.G., Ford D.K., Butt D.P., Nelson T.O. // Corrosion Sci. 1997. V. 39. № 12. P. 2067.
- Li Y., Yang Z., Yang K. et al. // Sci. Tot. Env. 2022. V. 821. P. 153174.
- Duan L., Yun Q., Jiang G. et al. // J. Env. Management. 2024. V. 353. P. 120184.
- Cattant F., Crusset D., Féron D. // Materials Today. 2008. V. 11. № 10. P. 32.
- Sun B., Liu X., Liu W. et al. // Hydrometallurgy. 2020. V. 198. P. 105508.
- Wu X., Liu Z., Liu X. // Hydrometallurgy. 2013. V. 134–135. P. 62.
- Liu W., Zhang R., Liu Z., Li C. // Hydrometallurgy. 2016. V. 160. P. 147.
- Xiao H.-F., Chen Q., Cheng H. et al. // J. Membrane Sci. 2017. V. 537. P. 111.
- Pierce R.A., Campbell-Kelly R.P., Visser A.E., Laurinat J.E. // Ind. Eng. Chem. Res. 2007. V. 46. № 8. P. 2372.
- Леванов А.В., Исайкина О.Я., Лунин В.В. // Журн. физ. химии. 2019. Т. 93. № 9. С. 1328. [Levanov A.V., Isaikina O.Y., Lunin V.V. // Russ. J. Phys. Chem. A. 2019. V. 93. № 9. P. 1677.]
- Леванов А.В., Кусков И.В., Зосимов А.В. и др. // Кинетика и катализ. 2003. Т. 44. № 6. С. 810. [Levanov A.V., Kuskov I.V., Zosimov A.V. et al. // Kinet. Catal. 2003. V. 44. № 6. P. 740].
- Smith R.M., Martell A.E. Critical Stability Constants. V. 4. Inorganic Complexes. New York: Plenum Press, 1976.
- Леванов А.В., Кусков И.В., Койайдарова К.Б. и др. // Кинетика и катализ. 2005. Т. 46. № 1. С. 147. [Levanov A.V., Kuskov I.V., Koiaidarova K.B. et al. // Kinet. Catal. 2005. V. 46. № 1. P. 138.]
- Rischbieter E., Stein H., Schumpe A. // J. Chem. Eng. Data. 2000. V. 45. № 2. P. 338.
- Clever H.L., Battino R., Miyamoto H. et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. № 3. P. 033102.
- Конник Э.И. // Успехи химии. 1977. Т. 46. № 6. С. 1097. [Konnik E.I. // Russ. Chem. Rev. 1977. V. 46. № 6. P. 577].
- Леванов А.В., Исайкина О.Я., Гасанова Р.Б., Лунин В.В. // Журн. физ. химии. 2017. Т. 91. № 8. С. 1307. [Levanov A.V., Isaikina O.Y., Gasanova R.B., Lunin V.V. // Russ. J. Phys. Chem. A. 2017. V. 91. № 8. P. 1427].
Supplementary files
