BLATTABACTERIUMAND GUT MICROBIOTA: LINKS OF THE ROACH (BLATTODEA) BIOCHEMICAL ADAPTABILITY MECHANISMS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The cocroach order (Blattodea) attracts attention of researchers due to unique physiology and adaptive strategies. Investigations of cockroach physiology and adaptive mechanisms are of interest for both developing effective pest combating strategies and prospective biotechnological research. In the context of biochemical adaptability, the key feature of the cockroaches is a symbiosis withBlattabacterium, which provides for effective nitrogen and amino acid metabolism. Gut microbiota, which regulates nitrogen, carbohydrate and vitamin metabolism, is also embedded in the common symbiotic system of the organism. Therefore,Blattabacteriumand gut microbiota form a united adaptive system. Literary data on this area is extensive, but mostly deals with particular components of the cockroach symbiotic interactions. A comprehensive analysis covering all of the system’s elements in the context of their biochemical interdependence and common adaptive potential is a rarity. This review aims at revealing understudied patterns in the mechanisms of biochemical integration between a cockroach, its gut microbiota and Blattabacterium. Particular attention is given to the mechanisms underlying the high adaptability of cockroaches and having practical significance, as they could contribute to developing pest population control methods. Therefore, a substantial part of this review concerns the analysis of the mechanisms of symbiotic regulation of gene expression which can serve as a foundation for controlling cockroach adaptive reactions.

About the authors

A. N. Gladkikh

Institute of biochemistry and genetics of Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University; Ufa University of Science and Technology

Author for correspondence.
Email: marckelow.vitalick2017@yandex.ru
Ufa, Russia; Ufa, Russia; Ufa, Russia

V. A. Markelov

Institute of biochemistry and genetics of Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University

Email: marckelow.vitalick2017@yandex.ru
Ufa, Russia; Ufa, Russia

E. S. Saltykova

Institute of biochemistry and genetics of Ufa Federal Research Centre of the Russian Academy of Sciences

Email: marckelow.vitalick2017@yandex.ru
Ufa, Russia

References

  1. Brenner RJ, Kramer RD(2019) Cockroaches (Blattaria).In: Medical and Veterinary Entomology. Elsevier, pp. 61–77.
  2. Li X-R, Huang D-Y(2023) Atypical ‘long-tailed’ cockroaches arose during Cretaceous in response to angiosperm terrestrial revolution. PeerJ 11:e15067. https://doi.org/10.7717/peerj.15067
  3. Cochran DG(2009) Blattodea. In: Encyclopedia of Insects. Elsevier, pp. 108–112.
  4. Boneva B, Marutsov Pl, Zhelev G(2023) A survey of the distribution of synanthropic cockroaches in animal farms and food processing plants in bulgaria. TJS 21: 216–223. https://doi.org/10.15547/tjs.2023.03.002
  5. Mullins DE(2015) Physiology of Environmental Adaptations and Resource Acquisition in Cockroaches. Annu Rev Entomol 60: 473–492. https://doi.org/10.1146/annurev-ento-011613-162036
  6. Cruden DL, Gorrell TE, Markovetz AJ(1979) Novel microbial and chemical components of a specific black-band region in the cockroach hindgut. J Bacteriol 140: 687–698. https://doi.org/10.1128/jb.140.2.687-698.1979
  7. Guzman J, Junca H, Poehlein A, Daniel R, Vilcinskas A(2022) Composition of the core and differential bacterial microbiomes in the gut compartments of the Madagascar hissing cockroach Gromphadorhina portentosa. (Preprint) https://doi.org/10.21203/rs.3.rs-1692332/v1
  8. Phillips JE(1977) Excretion in insects: function of gut and rectum in concentrating and diluting the urine. Fed Proc 36: 2480–2486.
  9. Wall BJ, Oschman JL, Schmidt BA(1975) Morphology and function of Malpighian tubules and associated structures in the cockroach,Periplaneta americana. J Morphology 146: 265–306. https://doi.org/10.1002/jmor.1051460207
  10. Bell WJ, Roth LM, Nalepa CA(2007) Cockroaches: ecology, behavior, and natural history. JHU Press.
  11. Hamilton RL, Mullins DE, Orcutt DM(1985) Freezing-tolerance in the woodroach Cryptocercus punctulatus (Scudder). Experientia 41: 1535–1537. https://doi.org/10.1007/BF01964793
  12. Wharton DA(2011) Cold tolerance of New Zealand alpine insects. Journal of Insect Physiology 57: 1090–1095. https://doi.org/10.1016/j.jinsphys.2011.03.004
  13. Vrba P, Sucháčková Bartoňová A, Andres M, Nedvěd O, Šimek P, Konvička M(2022) Exploring Cold Hardiness within a Butterfly Clade: Supercooling Ability and Polyol Profiles in European Satyrinae. Insects 13: 369. https://doi.org/10.3390/insects13040369
  14. Wharton DA, Pow B, Kristensen M, Ramløv H, Marshall CJ(2009) Ice-active proteins and cryoprotectantsfrom the New Zealand alpine cockroach, Celatoblatta quinquemaculata. Journal of Insect Physiology 55: 27–31. https://doi.org/10.1016/j.jinsphys.2008.09.007
  15. Morgan-Richards M, Marshall CJ, Biggs PJ, Trewick SA(2023) Insect Freeze-Tolerance Downunder: The Microbial Connection. Insects 14: 89. https://doi.org/10.3390/insects14010089
  16. Jahnes BC, Herrmann M, Sabree ZL(2019) Conspecific coprophagy stimulates normal development in a germ-free model invertebrate. PeerJ 7: e6914. https://doi.org/10.7717/peerj.6914
  17. Vera-Ponce De León A, Jahnes BC, Otero-Bravo A, Sabree ZL(2021) Microbiota Perturbation or Elimination Can Inhibit Normal Development and Elicit a Starvation-Like Response in an Omnivorous Model Invertebrate. mSystems 6:10.1128/msystems.00802-21. https://doi.org/10.1128/msystems.00802-21
  18. Chen Z, Wen S, Shen J, Wang J, Liu W, Jin X(2023) Composition and diversity of the gut microbiota across different life stages of American cockroach (Periplaneta americana). Bull Entomol Res 113: 787–793. https://doi.org/10.1017/S0007485323000469
  19. Domínguez-Santos R, Baixeras J, Moya A, Latorre A, Gil R, García-Ferris C(2024) Gut Microbiota Is Not Essential for Survival and Development in Blattella germanica, but Affects Uric Acid Storage. Life 14: 153. https://doi.org/10.3390/life14010153
  20. Park MS, Park P, Takeda M(2013) Roles of fat body trophocytes, mycetocytes and urocytes in the American cockroach, Periplaneta americana under starvation conditions: An ultrastructural study. Arthropod Structure & Development 42: 287–295. https://doi.org/10.1016/j.asd.2013.03.004
  21. Latorre A, Domínguez-Santos R, García-Ferris C, Gil R(2022) Of Cockroaches and Symbionts: Recent Advances in the Characterization of the Relationship between Blattella germanica and Its Dual Symbiotic System. Life 12: 290. https://doi.org/10.3390/life12020290
  22. Patiño-Navarrete R, Piulachs M-D, Belles X, Moya A, Latorre A, Peretó J(2014) The cockroachBlattella germanicaobtains nitrogen from uric acid through a metabolic pathway shared with its bacterial endosymbiont. Biol Lett 10:20140407. https://doi.org/10.1098/rsbl.2014.0407
  23. Mikani A, Wang Q-S, Takeda M(2012) Brain-midgut short neuropeptide F mechanism that inhibits digestive activity of the American cockroach, Periplaneta americana upon starvation. Peptides 34: 135–144. https://doi.org/10.1016/j.peptides.2011.10.028
  24. Park MS, Takeda M(2014) Cloning of PaAtg8 and roles of autophagy in adaptation to starvation with respect to the fat body and midgut of the Americana cockroach, Periplaneta americana. Cell Tissue Res 356: 405–416. https://doi.org/10.1007/s00441-014-1802-3
  25. Kinjo Y, Bourguignon T, Hongoh Y, Lo N, Tokuda G, Ohkuma M(2022) Coevolution of Metabolic Pathways in Blattodea and TheirBlattabacteriumEndosymbionts, and Comparisons with Other Insect-Bacteria Symbioses. Microbiol Spectr 10:e02779-22. https://doi.org/10.1128/spectrum.02779-22
  26. Wilson ACC, Duncan RP(2015) Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses. Proc Natl Acad Sci USA 112: 10255–10261. https://doi.org/10.1073/pnas.1423305112
  27. Ribeiro Lopes M, Simonet P, Duport G, Gaget K, Balmand S, Sugio A, Simon J-C, Parisot N, Calevro F(2021) Isolation of Insect Bacteriocytes as a Platform for Transcriptomic Analyses. In: Jin H, Kaloshian I (eds) RNA Abundance Analysis. US, New York: Springer pp. 185–198.
  28. Li N-N, Jiang S, Lu K-Y, Hong J-S, Wang Y-B, Yan J-Y, Luan J-B(2022) Bacteriocyte development is sexually differentiated in Bemisia tabaci. Cell Reports 38: 110455. https://doi.org/10.1016/j.celrep.2022.110455
  29. Kinjo Y, Bourguignon T, Tong KJ, Kuwahara H, Lim SJ,Yoon KB, Shigenobu S, Park YC, Nalepa CA, Hongoh Y, Ohkuma M, Lo N, Tokuda G(2018) Parallel and Gradual Genome Erosion in the Blattabacterium Endosymbionts of Mastotermes darwiniensis and Cryptocercus Wood Roaches. Genome Biology and Evolution 10: 1622–1630. https://doi.org/10.1093/gbe/evy110
  30. Vicente CSL, Mondal SI, Akter A, Ozawa S, Kikuchi T, Hasegawa K(2018) Genome analysis of new Blattabacterium spp., obligatory endosymbionts of Periplaneta fuliginosa and P. japonica. PLoS ONE 13: e0200512. https://doi.org/10.1371/journal.pone.0200512
  31. Latorre A, Manzano-Marín A(2017) Dissecting genome reduction and trait loss in insect endosymbionts. Annals of the New York Academy of Sciences 1389: 52–75. https://doi.org/10.1111/nyas.13222
  32. Kenyon LJ, Sabree ZL(2014) Obligate Insect Endosymbionts Exhibit Increased Ortholog Length Variation and Loss of Large Accessory Proteins Concurrent with Genome Shrinkage. Genome Biology and Evolution 6: 763–775. https://doi.org/10.1093/gbe/evu055
  33. Arab DA, Bourguignon T, Wang Z, Ho SYW, Lo N(2020) Evolutionary rates are correlated between cockroach symbionts and mitochondrial genomes. Biol Lett 16: 20190702. https://doi.org/10.1098/rsbl.2019.0702
  34. López-Sánchez MJ, Neef A, Patiño-Navarrete R, Navarro L, Jiménez R, Latorre A, Moya A(2008) Blattabacteria, the endosymbionts of cockroaches, have small genome sizes and high genome copy numbers. Environmental Microbiology 10: 3417–3422. https://doi.org/10.1111/j.1462-2920.2008.01776.x
  35. Rosas T, García-Ferris C, Domínguez-Santos R, Llop P, Latorre A, Moya A(2018) Rifampicin treatment of Blattella germanica evidences a fecal transmission route of their gut microbiota. FEMS Microbiology Ecology 94(2). https://doi.org/10.1093/femsec/fiy002
  36. Cazzaniga M, Domínguez-Santos R, Marín-Miret J, Gil R, Latorre A, García-Ferris C(2023) Exploring Gut Microbial Dynamics and Symbiotic Interaction in Blattella germanica Using Rifampicin. Biology 12: 955. https://doi.org/10.3390/biology12070955
  37. Noda T, Okude G, Meng X-Y, Koga R, Moriyama M, Fukatsu T(2020) Bacteriocytes and Blattabacterium Endosymbionts of the German Cockroach Blattella germanica, the Forest Cockroach Blattella nipponica, and Other Cockroach Species. Zoological Science 37: 1. https://doi.org/10.2108/zs200054
  38. Muñoz-Benavent M, Latorre A, Alemany-Cosme E, Marín-Miret J, Domínguez-Santos R, Silva FJ, Gil R, García-Ferris C(2021) Gut Microbiota Cannot Compensate the Impact of (quasi) Aposymbiosis in Blattella germanica. Biology 10: 1013. https://doi.org/10.3390/biology10101013
  39. Carrasco P, Pérez-Cobas AE(2014) Succession of the gut microbiota in the cockroach Blattella germanica. International Microbiology 99–109. https://doi.org/10.2436/20.1501.01.212
  40. Kinjo Y, Lo N, Martín PV, Tokuda G, Pigolotti S, Bourguignon T(2021) Enhanced Mutation Rate, Relaxed Selection, and the “Domino Effect” are associated with Gene Loss inBlattabacterium, A Cockroach Endosymbiont. Molecular Biology and Evolution 38: 3820–3831. https://doi.org/10.1093/molbev/msab159
  41. Koskiniemi S, Sun S, Berg OG, Andersson DI(2012) Selection-Driven Gene Loss in Bacteria. PLoS Genet 8: e1002787. https://doi.org/10.1371/journal.pgen.1002787
  42. Bourguignon T, Kinjo Y, Villa-Martín P, Coleman NV, Tang Q, Arab DA, Wang Z, Tokuda G, Hongoh Y, Ohkuma M, Ho SYW, Pigolotti S, Lo N(2020) Increased Mutation Rate Is Linked to Genome Reduction in Prokaryotes. Current Biology 30:3848-3855.e4. https://doi.org/10.1016/j.cub.2020.07.034
  43. Alleman A, Hertweck KL, Kambhampati S(2018) Random Genetic Drift and Selective Pressures Shaping the Blattabacterium Genome. Sci Rep 8:13427. https://doi.org/10.1038/s41598-018-31796-6
  44. Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, Tanaka M, Satoh N, Bachtrog D, Wilson ACC, von Dohlen CD, Fukatsu T, McCutcheon JP(2013) Horizontal Gene Transfer from Diverse Bacteria to an Insect Genome Enables a Tripartite Nested Mealybug Symbiosis. Cell 153: 1567–1578. https://doi.org/10.1016/j.cell.2013.05.040
  45. Garber AI, Kupper M, Laetsch DR, Weldon SR, Ladinsky MS, Bjorkman PJ, McCutcheon JP(2021) The Evolution of Interdependence in a Four-Way Mealybug Symbiosis. Genome Biology and Evolution 13: evab123. https://doi.org/10.1093/gbe/evab123
  46. Bennett GM, Moran NA(2013) Small, Smaller, Smallest: The Origins and Evolution of Ancient Dual Symbioses in a Phloem-Feeding Insect. Genome Biology and Evolution 5: 1675–1688. https://doi.org/10.1093/gbe/evt118
  47. López-Sánchez MJ, Neef A, Peretó J, Patiño-Navarrete R, Pignatelli M, Latorre A, Moya A(2009) Evolutionary Convergence and Nitrogen Metabolism in Blattabacterium strain Bge, Primary Endosymbiont of the Cockroach Blattella germanica. PLoS Genet 5: e1000721. https://doi.org/10.1371/journal.pgen.1000721
  48. Douglas AE(2014) Molecular dissection of nutrient exchange at the insect-microbial interface. Current Opinion in Insect Science 4: 23–28. https://doi.org/10.1016/j.cois.2014.08.007
  49. Patiño-Navarrete R, Moya A, Latorre A, Peretó J(2013) Comparative Genomics of Blattabacterium cuenoti: The Frozen Legacy of an Ancient Endosymbiont Genome. Genome Biology and Evolution 5: 351–361. https://doi.org/10.1093/gbe/evt011
  50. Domínguez-Santos R, Pérez-Cobas AE, Artacho A, Castro JA, Talón I, Moya A, García-Ferris C, Latorre A(2020) Unraveling Assemblage, Functions and Stability of the Gut Microbiota of Blattella germanica by Antibiotic Treatment. Front Microbiol 11: 487. https://doi.org/10.3389/fmicb.2020.00487
  51. Tinker KA, Ottesen EA(2021) Differences in Gut Microbiome Composition Between Sympatric Wild and Allopatric Laboratory Populations of Omnivorous Cockroaches. Front Microbiol 12: 703785. https://doi.org/10.3389/fmicb.2021.703785
  52. Tinker KA, Ottesen EA(2020) Phylosymbiosis acrossDeeply Diverging Lineages of Omnivorous Cockroaches (Order Blattodea). Appl Environ Microbiol 86: e02513-19. https://doi.org/10.1128/AEM.02513-19
  53. Sacchi L, Grigolo A, De Piceis Polver P, Bigliardi E, Laudani U(1991) Endocytobiosis in Dictyoptera: the transmission of symbiotic bacteria inBlattella germanica L. (Dictyoptera Blattellidae). Ethology Ecology & Evolution 3: 155–158. https://doi.org/10.1080/03949370.1991.10721931
  54. Bertino-Grimaldi D, Medeiros MN, Vieira RP, Cardoso AM,Turque AS, Silveira CB, Albano RM, Bressan-Nascimento S, Garcia ES, De Souza W, Martins OB, Machado EA(2013) Bacterial community composition shifts in the gut of Periplaneta americana fed on different lignocellulosic materials. SpringerPlus 2: 609. https://doi.org/10.1186/2193-1801-2-609
  55. Wang Y-B, Li C, Yan J-Y, Wang T-Y, Yao Y-L, Ren F-R, Luan J-B(2022) Autophagy Regulates Whitefly-Symbiont Metabolic Interactions. Appl Environ Microbiol 88: e02089-21. https://doi.org/10.1128/AEM.02089-21
  56. McPherson S, Wada-Katsumata A, Hatano E, Silverman J, Schal C(2021) Comparison of Diet Preferences of Laboratory-Reared and Apartment-Collected German Cockroaches. Journal of Economic Entomology 114: 2189–2197. https://doi.org/10.1093/jee/toab139
  57. Sabree ZL, Kambhampati S, Moran NA(2009) Nitrogen recycling and nutritional provisioning byBlattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci USA 106: 19521–19526. https://doi.org/10.1073/pnas.0907504106
  58. Silva FJ, Domínguez-Santos R, Latorre A, García-Ferris C(2024) Comparative Transcriptomics of Fat Bodies between Symbiotic and Quasi-Aposymbiotic Adult Females of Blattella germanica with Emphasis on the Metabolic Integration with Its Endosymbiont Blattabacterium and Its Immune System. IJMS 25: 4228. https://doi.org/10.3390/ijms25084228
  59. Kambhampati S, Alleman A, Park Y(2013) Complete genome sequence of the endosymbiont Blattabacterium from the cockroach Nauphoeta cinerea (Blattodea: Blaberidae). Genomics 102: 479–483. https://doi.org/10.1016/j.ygeno.2013.09.003
  60. González-Domenech CM, Belda E, Patiño-Navarrete R, Moya A, Peretó J, Latorre A(2012) Metabolic stasis in an ancient symbiosis: genome-scale metabolic networks from two Blattabacterium cuenoti strains, primary endosymbionts of cockroaches. BMC Microbiol 12: S5. https://doi.org/10.1186/1471-2180-12-S1-S5
  61. Sabree ZL, Huang CY, Arakawa G, Tokuda G, Lo N, Watanabe H, Moran NA(2012) Genome Shrinkage and Loss of Nutrient-Providing Potential in the Obligate Symbiont of the Primitive Termite Mastotermes darwiniensis. Appl Environ Microbiol 78: 204–210. https://doi.org/10.1128/AEM.06540-11
  62. Tinker KA, Ottesen EA(2016) The Core Gut Microbiome of the American Cockroach, Periplaneta americana, Is Stable and Resilient to Dietary Shifts. Appl Environ Microbiol 82: 6603–6610. https://doi.org/10.1128/AEM.01837-16
  63. Kakumanu ML, Maritz JM, Carlton JM, Schal C(2018) Overlapping Community Compositions of Gut and Fecal Microbiomes in Lab-Reared and Field-Collected German Cockroaches. Appl Environ Microbiol 84: e01037-18. https://doi.org/10.1128/AEM.01037-18
  64. Cruden DL, Markovetz AJ(1984) Microbial aspects of the cockroach hindgut. Arch Microbiol 138: 131–139. https://doi.org/10.1007/BF00413013
  65. Hoyte HMD(1961) The protozoa occurring in the hind-gut of cockroaches: II. Morphology ofNyctotherus ovalis. Parasitology 51: 437–463. https://doi.org/10.1017/S0031182000070712
  66. Nalepa CA, Lenz M(2000) The ootheca ofMastotermes darwiniensisFroggatt (Isoptera: Mastotermitidae): homology with cockroach oothecae. Proc R Soc Lond B 267: 1809–1813. https://doi.org/10.1098/rspb.2000.1214
  67. Boscaro V, James ER, Fiorito R, Hehenberger E, Karnkowska A, Del Campo J, Kolisko M, Irwin NAT, Mathur V, Scheffrahn RH, Keeling PJ(2017) Molecular characterization and phylogeny of four new species of the genus Trichonympha (Parabasalia, Trichonymphea) from lower termite hindguts. International Journal of Systematic and Evolutionary Microbiology 67: 3570–3575. https://doi.org/10.1099/ijsem.0.002169
  68. Wolfe ZM, Scharf ME(2021) Differential microbial responses to antibiotic treatments by insecticide-resistant and susceptible cockroach strains (Blattella germanica L.). Sci Rep 11: 24196. https://doi.org/10.1038/s41598-021-03695-w
  69. Domínguez-Santos R, Pérez-Cobas AE, Cuti P, Pérez-Brocal V, García-Ferris C, Moya A, Latorre A, Gil R(2021) Interkingdom Gut Microbiome and Resistome of the CockroachBlattella germanica. mSystems 6:e01213-20. https://doi.org/10.1128/mSystems.01213-20
  70. Henry SM, Block RJ(1961) The sulfur metabolism of insects. VI. Metabolism of the sulfur amino acids and related compounds in the German cockroach, Blattella germanica (L.). Contribs Boyce Thompson Inst 109–123.
  71. Siegel LM, Davis PS(1974) Reduced Nicotinamide Adenine Dinucleotide Phosphate-Sulfite Reductase of Enterobacteria. Journal of Biological Chemistry 249: 1587–1598. https://doi.org/10.1016/S0021-9258(19)42922-0
  72. Reitzer L(2003) Nitrogen Assimilation and Global Regulation inEscherichia coli. Annu Rev Microbiol 57: 155–176. https://doi.org/10.1146/annurev.micro.57.030502.090820
  73. Ramazzina I, Folli C, Secchi A, Berni R, Percudani R(2006) Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes. Nat Chem Biol 2: 144–148. https://doi.org/10.1038/nchembio768
  74. Zhao R, Li Z, Sun Y, Ge W, Wang M, Liu H, Xun L, Xia Y(2022) EngineeredEscherichia coliNissle 1917 with urate oxidase and an oxygen-recycling system for hyperuricemia treatment. Gut Microbes 14:2070391. https://doi.org/10.1080/19490976.2022.2070391
  75. Arora J, Kinjo Y, Šobotník J, Buček A, Clitheroe C, Stiblik P, Roisin Y, Žifčáková L, Park YC, Kim KY, Sillam-Dussès D, Hervé V, Lo N, Tokuda G, Brune A, Bourguignon T(2022) The functional evolution of termite gut microbiota. Microbiome 10: 78. https://doi.org/10.1186/s40168-022-01258-3
  76. Konishi T, Tasaki E, Takata M, Matsuura K(2023) King- and queen-specific degradation of uric acid contributes to reproduction in termites. Proc R Soc B 290: 20221942. https://doi.org/10.1098/rspb.2022.1942
  77. Potrikus CJ, Breznak JA(1980) Uric Acid-Degrading Bacteria in Guts of Termites [Reticulitermes flavipes(Kollar)]. Appl Environ Microbiol 40: 117–124. https://doi.org/10.1128/aem.40.1.117-124.1980
  78. Potrikus CJ, Breznak JA(1981) Gut bacteria recycle uric acid nitrogen in termites: A strategy for nutrient conservation. Proc Natl Acad Sci USA 78: 4601–4605. https://doi.org/10.1073/pnas.78.7.4601
  79. Ayayee PA, Ondrejech A, Keeney G, Muñoz-Garcia A(2018) The role of gut microbiota in the regulation of standard metabolic rate in femalePeriplaneta americana. PeerJ 6: e4717. https://doi.org/10.7717/peerj.4717
  80. Block RJ, Henry SM(1961) Metabolism of the Sulphur Amino-Acids and of Sulphate in Blattella germanica. Nature 191: 392–393. https://doi.org/10.1038/191392a0
  81. Henry SM(1962) THE SIGNIFICANCE OF MICROORGANISMS IN THE NUTRITION OF INSECTS*. Trans NY Acad Sci 24: 676–683. https://doi.org/10.1111/j.2164-0947.1962.tb01905.x
  82. Rodrigues NR, Nunes MEM, Silva DGC, Zemolin APP, Meinerz DF, Cruz LC, Pereira AB, Rocha JBT, Posser T, Franco JL(2013) Is the lobster cockroach Nauphoeta cinerea a valuable model for evaluating mercury induced oxidative stress? Chemosphere 92: 1177–1182. https://doi.org/10.1016/j.chemosphere.2013.01.084
  83. Todorović D, Ilijin L, Mrdaković M, Vlahović M, Filipović A, Grčić A, Perić-Mataruga V(2019) Long-term exposure of cockroachBlaptica dubia (Insecta: Blaberidae) nymphs to magnetic fields of different characteristics: effects on antioxidant biomarkers and nymphal gut mass. International Journal of Radiation Biology 95: 1185–1193. https://doi.org/10.1080/09553002.2019.1589017
  84. Ayayee PA, Larsen T, Sabree Z(2016) Symbiotic essential amino acids provisioning in the American cockroach,Periplaneta americana(Linnaeus) under various dietary conditions. PeerJ 4: e2046. https://doi.org/10.7717/peerj.2046
  85. Jahnes BC, Sabree ZL(2020) Nutritional symbiosis and ecology of host-gut microbe systems in the Blattodea. Current Opinion in Insect Science 39: 35–41. https://doi.org/10.1016/j.cois.2020.01.001
  86. Muñoz-Benavent M, Hartkopf F, Van Den Bossche T, Piro VC, García-Ferris C, Latorre A, Renard BY, Muth T(2020) gNOMO: a multi-omics pipeline for integrated host and microbiome analysis of non-model organisms. NAR Genomics and Bioinformatics 2:lqaa058. https://doi.org/10.1093/nargab/lqaa058
  87. Benavent MM(2020) Understanding the dialog between the gut microbiota and the endosymbiont in the modelsystem B. germanica. Dissertation, Universitat de València.
  88. Ma B, Chang FN(2007) Purification and cloning of a Delta class glutathioneS-transferase displaying high peroxidase activity isolated from the German cockroachBlattella germanica. The FEBS Journal 274: 1793. https://doi.org/10.1111/j.1742-4658.2007.05728.x
  89. Adedara IA, Rosemberg DB, Souza DO, Farombi EO, Aschner M, Rocha JBT(2016) Neuroprotection of luteolin against methylmercury-induced toxicity in lobster cockroach Nauphoeta cinerea. Environmental Toxicology and Pharmacology 42: 243–251. https://doi.org/10.1016/j.etap.2016.02.001
  90. Sawicki R, Singh SP, Mondal AK, Beneš H, Zimniak P(2003) Cloning, expression and biochemical characterization of one Epsilon-class (GST-3) and ten Delta-class (GST-1) glutathione S-transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class. Biochemical Journal 370: 661–669. https://doi.org/10.1042/bj20021287
  91. Mrdaković M, Ilijin L, Vlahović M, Filipović A, Grčić A, Todorović D, Perić-Mataruga V(2019) Effects of dietary fluoranthene on nymphs of Blaptica dubia S. (Blattodea: Blaberidae). Environ Sci Pollut Res 26: 6216–6222. https://doi.org/10.1007/s11356-019-04133-1
  92. Adedara IA, Abioye OO, Oyedele GT, Ikeji CN, Afolabi BA, Rocha JBT, Farombi EO(2023) Perfluorooctanoic acid induces behavioral impairment and oxidative injury in Nauphoeta cinerea nymphs. Environ Sci Pollut Res 30: 110340–110351. https://doi.org/10.1007/s11356-023-30156-w
  93. Zhang J, Zhang Y, Li J, Liu M, Liu Z(2016) Midgut Transcriptome of the Cockroach Periplaneta americana and Its Microbiota: Digestion, Detoxification and Oxidative Stress Response. PLoS ONE 11:e0155254. https://doi.org/10.1371/journal.pone.0155254
  94. Zhang XC, Zhang F(2018) The Potential Control Strategies Based on the Interaction Between Indoor Cockroaches and Their Symbionts in China. In: Advances in Insect Physiology. Elsevier, pp 55–122
  95. Tegtmeier D, Thompson CL, Schauer C, Brune A(2016) Oxygen Affects Gut Bacterial Colonization and Metabolic Activities in a Gnotobiotic Cockroach Model. Appl Environ Microbiol 82: 1080–1089. https://doi.org/10.1128/AEM.03130-15
  96. Du Y, He C, An Y, Huang Y, Zhang H, Fu W, Wang M, Shan Z, Xie J, Yang Y, Zhao B(2024) The Role of Short Chain Fatty Acids in Inflammation and Body Health. IJMS 25: 7379. https://doi.org/10.3390/ijms25137379
  97. Yang H-T, Yang M-C, Sun J-J, Guo F, Lan J-F, Wang X-W, Zhao X-F, Wang J-X(2015) Catalase eliminates reactive oxygen species and influences the intestinal microbiota of shrimp. Fish & Shellfish Immunology 47: 63–73. https://doi.org/10.1016/j.fsi.2015.08.021
  98. Dubovskii IM, Olifirenko OA, Glupov VV(2005) Level and activities of antioxidants in intestine of larvae Galleria mellonella L. (Lepidoptera, Pyralidae) at peroral infestation by bacteria Bacillus thuringiensis ssp. galleriae. J Evol Biochem Phys 41: 20–25. https://doi.org/10.1007/s10893-005-0030-6
  99. Krishnan N, Sehnal F(2006) Compartmentalization of oxidative stress and antioxidant defense in the larval gut ofSpodoptera littoralis. Arch Insect Biochem Physiol 63: 1–10. https://doi.org/10.1002/arch.20135
  100. Ha E-M, Oh C-T, Ryu J-H, Bae Y-S, Kang S-W, Jang I, Brey PT, Lee W-J(2005) An Antioxidant System Required for Host Protection against Gut Infection in Drosophila. Developmental Cell 8: 125–132. https://doi.org/10.1016/j.devcel.2004.11.007
  101. Murzagulov GS, Saltykova ES, Gaifullina LR, Nikolenko AG(2013) Effect of population density on enzymatic activities of antioxidant and phenol oxidase systems in adult and immature lobster cockroaches Nauphoeta cinerea. J Evol Biochem Phys 49: 36–42. https://doi.org/10.1134/S0022093013010040
  102. Gautam UK, Bohatá A, Shaik HA, Zemek R, Kodrík D(2020) Adipokinetic hormone promotes infection with entomopathogenic fungus Isaria fumosorosea in the cockroach Periplaneta americana. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 229: 108677. https://doi.org/10.1016/j.cbpc.2019.108677
  103. Mannino MC, Huarte-Bonnet C, Davyt-Colo B, Pedrini N(2019) Is the Insect Cuticle the only Entry Gate for Fungal Infection? Insights into Alternative Modes of Action of Entomopathogenic Fungi. JoF 5: 33. https://doi.org/10.3390/jof5020033
  104. Siddiqui JA, Khan MM, Bamisile BS, Hafeez M, Qasim M, Rasheed MT, Rasheed MA, Ahmad S, Shahid MI, Xu Y(2022) Role of Insect Gut Microbiota in Pesticide Degradation: A Review. Front Microbiol 13: 870462. https://doi.org/10.3389/fmicb.2022.870462
  105. Buchon N, Silverman N, Cherry S(2014) Immunity in Drosophila melanogaster — from microbial recognition to whole-organism physiology. Nat Rev Immunol 14:796–810. https://doi.org/10.1038/nri3763
  106. Huang YH, Wang XJ, Zhang F, Huo XB, Fu RS, Liu JJ, Sun WB, Kang DM, Jing X(2013) The Identification of a Bacterial Strain BGI-1 Isolated From the Intestinal Flora ofBlattella Germanica, and Its Anti-Entomopathogenic Fungi Activity. jnl econ entom 106: 43–49. https://doi.org/10.1603/EC12120
  107. Mazumdar T, Teh BS, Murali A, Schmidt-Heck W, Schlenker Y, Vogel H, Boland W(2021) Transcriptomics Reveal the Survival Strategies of Enterococcus mundtii in the Gut of Spodoptera littoralis. J Chem Ecol 47: 227–241. https://doi.org/10.1007/s10886-021-01246-1
  108. Chen S, Chen L, Qi Y, Xu J, Ge Q, Fan Y, Chen D, Zhang Y, Wang L, Hou T, Yang X, Xi Y, Si J, Kang L, Wang L(2021) Bifidobacterium adolescentis regulates catalase activity and host metabolism and improves healthspan and lifespan in multiple species. Nat Aging 1: 991–1001. https://doi.org/10.1038/s43587-021-00129-0
  109. Rabatel A, Febvay G, Gaget K, Duport G, Baa-Puyoulet P, Sapountzis P, Bendridi N, Rey M, Rahbé Y, Charles H, Calevro F, Colella S(2013) Tyrosine pathway regulation is host-mediated in the pea aphid symbiosis during late embryonic and early larval development. BMC Genomics 14: 235. https://doi.org/10.1186/1471-2164-14-235
  110. Hoffmann JA(2003) The immune response of Drosophila. Nature 426: 33–38. https://doi.org/10.1038/nature02021
  111. Arumugam G, Sreeramulu B, Paulchamy R, Thangavel S, Sundaram J(2017) Purification and functional characterization of lectin with phenoloxidase activity from the hemolymph of cockroach,Periplaneta americana. Arch Insect Biochem Physiol 95: e21390. https://doi.org/10.1002/arch.21390
  112. Liu C, Zhu J, Ma J, Zhang J, Wang X, Zhang R(2020) A novel hexamerin with an unexpected contribution to the prophenoloxidase activation system of the Chinese oak silkworm,Antheraea pernyi. Arch Insect Biochem Physiol 103: e21648. https://doi.org/10.1002/arch.21648
  113. Ashida M(1990) The prophenoloxidase cascade in insect immunity. Research in Immunology 141:908–910. https://doi.org/10.1016/0923-2494(90)90191-Z
  114. Whitehead DL(2011) Haemocytes play a commensal rôle in the synthesis of the dihydroxybenzoate required as a precursor for sclerotization of the egg case (ootheca) in the cockroachPeriplaneta americana(L). Bull Entomol Res 101: 251–258. https://doi.org/10.1017/S0007485310000246
  115. Sugumaran M, Nellaiappan K(1990) On the latency and nature of phenoloxidase present in the left colleterial gland of the cockroachPeriplaneta americana. Arch Insect Biochem Physiol 15: 165–181. https://doi.org/10.1002/arch.940150305
  116. Zhang D, Chen J(2014) Phenoloxidase is involved in regulating immune response to Escherichia coli in Blattella germanica (Blattodea: Blattellidae). Acta Entomologica Sinica 57: 1123–1132. https://doi.org/10.16380/J.KCXB.2014.10.001
  117. Volkmann A(1991) Localization of phenoloxidase in the midgut of Periplaneta americana parasitized by larvae ofMoniliformis moniliformis (Acanthocephala). Parasitol Res 77: 616–621. https://doi.org/10.1007/BF00931025
  118. Zhang Q, Wang S, Zhang X, Zhang K, Li Y, Yin Y, Zhang R, Zhang Z(2022) Beneficial Bacteria in the Intestines of Housefly Larvae Promote Larval Development and Humoral Phenoloxidase Activity, While Harmful Bacteria do the Opposite. Front Immunol 13: 938972. https://doi.org/10.3389/fimmu.2022.938972
  119. Wang C, St. Leger RJ(2006) A collagenous protective coat enablesMetarhizium anisopliaeto evade insect immune responses. Proc Natl Acad Sci USA 103: 6647–6652. https://doi.org/10.1073/pnas.0601951103
  120. Patiño Navarrete R(2013) Evolutionary genomics and functional studies on the metabolic role of Blattabacterium, primary endosymbiont of cockroaches. Dissertation, Universitat de València.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences