Factors that reduce the duration of picosecond stimulated emission of the AlxGa1–xAs–GaAs–AlxGa1–xAs heterostructure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New experimental data have been obtained indicating the following two reasons for the previously discovered significant decrease in the duration of the intrinsic picosecond emission of the AlxGa1–xAs–GaAs–AlxGa1–xAs heterostructure emerging from its end in a preferred direction: 1) the emission reflected from the end returning to the active region takes up a significant portion of the population inversion energy that would otherwise be spent on generating emission moving toward the end; 2) the resulting inhomogeneities in the reflected emission caused such a switching of the states of the multistable photonic crystal induced in the heterostructure by its emission that the forbidden zone for the emission emerging from the end in a preferred direction grew, and the emission trajectories changed in the heterostructure and, as a consequence, in the air space.

Full Text

Restricted Access

About the authors

N. N. Ageeva

Kotel’nikov Institute of Radioengineering and Electronics RAS

Email: bil@cplire.ru
Russian Federation, Mokhovaya Srt., 11, build. 7, Moscow, 125009

I. L. Bronevoi

Kotel’nikov Institute of Radioengineering and Electronics RAS

Author for correspondence.
Email: bil@cplire.ru
Russian Federation, Mokhovaya Srt., 11, build. 7, Moscow, 125009

A. N. Krivonosov

Kotel’nikov Institute of Radioengineering and Electronics RAS

Email: bil@cplire.ru
Russian Federation, Mokhovaya Srt., 11, build. 7, Moscow, 125009

References

  1. Ageeva N.N., Bronevoi I.L., Kumekov S.E. et al. // Proc. SPIE. 1992. V. 1842. P. 70.
  2. Aгеева Н.Н., Броневой И.Л., Кривоносов А.Н. // ЖЭТФ. 2022. Т. 162. № 6. С. 1018.
  3. Aгеева Н.Н., Броневой И.Л., Кривоносов А.Н. // РЭ. 2023. Т. 68. № 3. С. 211.
  4. Aгеева Н.Н., Броневой И.Л., Кривоносов А.Н. // РЭ. 2024. Т. 69. № 2. С. 187.
  5. Aгеева Н.Н., Броневой И.Л., Кривоносов А.Н. // РЭ. 2024. Т. 69. № 7. С. 52.
  6. Aгеева Н.Н., Броневой И.Л., Кривоносов А.Н. // РЭ. 2025. Т. 70. № 1. С. 63.
  7. Агеева Н.Н., Броневой И.Л., Кривоносов А.Н. и др. // ФТП. 2020. Т. 54. № 10. С. 1018.
  8. Агеева Н.Н., Броневой И.Л., Кривоносов А.Н. и др. // ФТП. 2002. Т. 36. № 2. С. 144.
  9. Агеева Н.Н., Броневой И.Л., Кривоносов А.Н. и др. // ЖЭТФ. 2013. Т. 144. № 2. С. 227.
  10. Bозианова А.В., Ходзицкий М.К. // Нанофотоника. Часть 1. СПб: НИУ ИТМО, 2013.
  11. Агеева Н.Н., Броневой И.Л., Кривоносов А.Н. и др. // ЖЭТФ. 2013. Т. 143. № 4. С. 634.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental scheme.

Download (208KB)
3. Fig. 2. Chronograms of the spectrum integral: (a) – sY-radiation emerging from the Y-end of the heterostructure; (b) – sd-radiation – part of the s-radiation entering the light guide configured to measure sY-radiation, but with AO shifted by 506 μm in the X direction; (c) – sX-radiation emerging from the X-end of the heterostructure.

Download (127KB)
4. Fig. 3. Chronograms of spectral components of sY-radiation with ћω: 1.411 eV (a), 1.393 eV (b) and 1.384 eV (c). Fig. (d) shows the total chronogram for all measured sY-components.

Download (151KB)
5. Fig. 4. Spectra of the parameters of the s-radiation intensity change with time. (a) Spectrum T1/2(ћω) of the duration (FWHM) of the spectral components: 1 – sY-radiation; 2 – o-radiation [11]. (b) Chronograms in a semi-logarithmic scale of the sY-components with ћω: 1 – 1.39 eV, 2 – 1.402 eV. The tangent lines mark the sections of exponential increase at the front and exponential relaxation at the decline of the sY-radiation. (c) Spectra of characteristic time: 1 – increase of sY-radiation τi (ћω), 2 – relaxation of sY-radiation τr (ћω), 3 – relaxation of o-radiation τr(ћω) [11].

Download (210KB)
6. Fig. 5. Spectra of sY radiation at different moments of time t: 1 ps (1), 3 ps (2), 5 ps (3), 6 ps (4), 8.25 ps (5), 9 ps (6), 10 ps (7), 11 ps (8), 12 ps (9), 15 ps (10). For t = 0, we take the moment of time at which the sY component with the smallest amplitude has an intensity IsY = 7 rel. units.

Download (361KB)
7. Fig. 6. Measured spectra of the time-integrated energy of sX radiation WsX(ħω) (1), sY radiation WsY(ħω) (2) and the spectrum of radiation energy WΣY(ħω), obtained by adding the instantaneous spectra of sY radiation (3).

Download (63KB)
8. Fig. 7. Instantaneous spectra of sY-radiation measured at t: 1 – 6 ps, 2 – 8.25 ps. The spectra are shown to illustrate mode switching. For clarity, dotted lines are drawn through local convexities and concavities on the spectra.

Download (107KB)
9. Fig. 8. Instantaneous spectra of sY-radiation measured at t: 1 – 5 ps, 2 – 10 ps, ​​3 – 12 ps. The spectra illustrate the establishment of different states of the photonic crystal. The arrows indicate the intervals ξB between the Lvyp centers.

Download (107KB)
10. Fig. 9. Chronograms: (a) – normalized to the amplitude for sY-radiation (1) and r-radiation (2) at ћω = 1.402 eV, presented in a semilogarithmic scale. Tangent lines mark the sections of exponential growth and exponential decay on the chronograms. Symbols 3 indicate the moments of switching the states of the PC. Symbols 4, 5 are explained in the text; (b) – r-radiation in a linear scale, to which straight lines and exponential tangents are drawn. Dots indicate the moments at which the law of change of the intensity of r-radiation changes with time.

Download (258KB)

Copyright (c) 2025 Russian Academy of Sciences