Evaluation of the Applicability of External X-ray Radiation to Stimulate the Autoradiolysis Processes in Therapeutic Radiopharmaceuticals (Exemplified by [153Sm]Sm-PSMA-617 and [177Lu]Lu-PSMA-617)
- Autores: Mitrofanov Y.A.1, Bubenshchikov V.B.1, Belousov A.V.1, Lunev A.S.1, Larenkov A.A.1
- 
							Afiliações: 
							- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency
 
- Edição: Volume 57, Nº 1 (2023)
- Páginas: 28-38
- Seção: RADIATION CHEMISTRY
- URL: https://cijournal.ru/0023-1193/article/view/661529
- DOI: https://doi.org/10.31857/S0023119323010096
- EDN: https://elibrary.ru/DCWVPG
- ID: 661529
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The paper presents the results of a study on the radiolytic degradation of vector molecules in radiopharmaceuticals, caused by ionizing radiation from the radionuclide used in the preparations, in comparison with the equal dose of external X-ray irradiation. The dose factors for therapeutic radionuclides samarium-153 and lutetium-177 in aqueous solutions were estimated in geometry simulating the finished dosage form of radiopharmaceuticals (standard injection vial ) both by computational methods (in silico) and applying chemical dosimetry. Irradiation with external X-ray source to doses formed in volume of therapeutic radiopharmaceuticals with given radioactivity concentration was performed on an LNK-268 X-ray unit. Using the [153Sm]Sm-PSMA-617 and [177Lu]Lu-PSMA-617 radiopharmaceuticals as an instance, we compared the degree of radiolytic degradation and the profiles of radiolytic impurities formed as a result of both external X-ray irradiation and autoradiolysis. Qualitative coincidence of the impurity profiles formed in both cases was noted. It has been shown that external X-ray radiation can be used to simulate the autoradiolysis processes of radiopharmaceuticals if additional corrections are made for the type of radiation and dose rate.
Palavras-chave
Sobre autores
Yu. Mitrofanov
State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency
														Email: anton.larenkov@gmail.com
				                					                																			                												                								Moscow, 123098 Russia						
V. Bubenshchikov
State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency
														Email: anton.larenkov@gmail.com
				                					                																			                												                								Moscow, 123098 Russia						
A. Belousov
State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency
														Email: anton.larenkov@gmail.com
				                					                																			                												                								Moscow, 123098 Russia						
A. Lunev
State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency
														Email: anton.larenkov@gmail.com
				                					                																			                												                								Moscow, 123098 Russia						
A. Larenkov
State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency
							Autor responsável pela correspondência
							Email: anton.larenkov@gmail.com
				                					                																			                												                								Moscow, 123098 Russia						
Bibliografia
- Dolgin E. // Nat. Biotechnol. 2018. V. 36. № 12. P. 1125–1127. https://doi.org/10.1038/nbt1218-1125
- Hennrich U., Kopka K. // Pharmaceuticals. 2019. V. 12. № 3. P. 114. https://doi.org/10.3390/ph12030114
- Novartis PluvictoTM approved by FDA as first targeted radioligand therapy for treatment of progressive, PSMA positive metastatic castration-resistant prostate cancer | Novartis [Electronic resource]. URL: https://www.novartis.com/news/media-releases/novartis-pluvictotm-approved-fda-first-targeted-radioligand-therapy-treatment-progressive-psma-positive-metastatic-castration-resistant-prostate-cancer (accessed: 01.08.2022).
- Baudhuin H., Cousaert J., Vanwolleghem P., Raes G., Caveliers V., Keyaerts M., Lahoutte T., Xavier C. // Pharmaceuticals. 2021. V. 14. № 5. P. 448 https://doi.org/10.3390/ph14050448
- Mu L., Hesselmann R., Oezdemir U., Bertschi L., Blanc A., Dragic M., Löffler D., Smuda C., Johayem A., Schibli R. // Appl. Radiat. Isot. 2013. V. 76. P. 63–69 https://doi.org/10.1016/j.apradiso.2012.07.022
- Martin S., Tönnesmann R., Hierlmeier I., Maus S., Rosar F., Ruf J., Holland J.P., Ezziddin S., Bartholomä M.D. // J. Med. Chem. 2021. V. 64. № 8. P. 4960–4971 https://doi.org/10.1021/acs.jmedchem.1c00045
- Rothschild W.G., Allen A.O. // Radiat. Res. 1958. V. 8. № 2. P. 101. https://doi.org/10.2307/3570600
- Hart E.J., Walsh P.D. // Radiat. Res. 1954. V. 1. № 4. P. 342–346.
- Hart E.J. // Radiat. Res. 1955. V. 2. № 1. P. 33–46.
- Bjergbakke E., Sehested K. // Radiation Chemistry / ed. Hart E.J. 1968. P. 579–584. https://doi.org/10.1021/ba-1968-0081.ch040
- Sharpe P.H.G., Barrett J.H., Berkley A.M. // Int. J. Appl. Radiat. Isot. 1985. V. 36. № 8. P. 647–652. https://doi.org/10.1016/0020-708X(85)90006-7
- Sharpe P.H.G., Sehested K. // Int. J. Radiat. Appl. Instrumentation. Part C. Radiat. Phys. Chem. 1989. V. 34. № 5. P. 763–768. https://doi.org/10.1016/1359-0197(89)90281-6
- Sharpe P., Miller A., Bjergbakke E. // Int. J. Radiat. Appl. Instrumentation. Part C. Radiat. Phys. Chem. 1990. V. 35. № 4–6. P. 757–761. https://doi.org/10.1016/1359-0197(90)90311-5
- Wang F., Li Z., Feng X., Yang D., Lin M. // Prostate Cancer Prostatic Dis. Springer US, 2022. V. 25. № 1. P. 11–26. https://doi.org/10.1038/s41391-021-00394-5
- Kopka K., Benešová M., Bařinka C., Haberkorn U., Babich J. // J. Nucl. Med. 2017. V. 58. № Supplement 2. P. 17S–26S. https://doi.org/10.2967/jnumed.116.186775
- Allison J., Amako K., Apostolakis J., Arce P., Asai M., Aso T., Bagli E., Bagulya A., Banerjee S., Barrand G., Beck B.R., Bogdanov A.G., Brandt D., Brown J.M.C., Burkhardt H., Canal P., Cano-Ott D., Chauvie S., Cho K., et al. // Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2016. V. 835. P. 186–225. https://doi.org/10.1016/j.nima.2016.06.125
- Taschereau R., Chow P.L., Cho J.S., Chatziioannou A.F. // Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2006. V. 569. № 2 SPEC. ISS. P. 373–377. https://doi.org/10.1016/j.nima.2006.08.038
- Khusnulina A. // IOP Conf. Ser. Mater. Sci. Eng. 2014. V. 66. № 1. P. 012032. https://doi.org/10.1088/1757-899X/66/1/012032
- Stabin M.G., Konijnenberg M.W. // J. Nucl. Med. 2000. V. 41. № 1. P. 149–160.
- Radionuclide Decay Data [Electronic resource]. URL: http://hps.org/publicinformation/radardecaydata.cfm (accessed: 15.05.2022).
- Andersson M., Johansson L., Eckerman K., Mattsson S. // EJNMMI Res. EJNMMI Research, 2017. V. 7. № 1. P. 88. https://doi.org/10.1186/s13550-017-0339-3
- Goorley T., James M., Booth T., Brown F., Bull J., Cox L.J., Durkee J., Elson J., Fensin M., Forster R.A., Hendricks J., Hughes H.G., Johns R., Kiedrowski B., Martz R., Mashnik S., McKinney G., Pelowitz D., Prael R., et al. // Nucl. Technol. 2012. V. 180. № 3. P. 298–315. https://doi.org/10.13182/NT11-135
- de Blois E., Chan H.S., de Zanger R., Konijnenberg M., Breeman W.A.P. // Appl. Radiat. Isot. Elsevier, 2014. V. 85. P. 28–33. https://doi.org/10.1016/j.apradiso.2013.10.023
- de Blois E., Sze Chan H., Konijnenberg M., de Zanger R., A.P. Breeman W. // Curr. Top. Med. Chem. 2013. V. 12. № 23. P. 2677–2685. https://doi.org/10.2174/1568026611212230005
- Ruigrok E.A.M., Tamborino G., de Blois E., Roobol S.J., Verkaik N., De Saint-Hubert M., Konijnenberg M.W., van Weerden W.M., de Jong M., Nonnekens J. // Eur. J. Nucl. Med. Mol. Imaging. Springer Berlin Heidelberg, 2022. № 0123456789. P. https://doi.org/10.1007/s00259-022-05821-w
- Traino A.C., Marcatili S., Avigo C., Sollini M., Erba P.A., Mariani G. // Med. Phys. 2013. V. 40. № 4. P. 042505. https://doi.org/10.1118/1.4794473
- PRODUCT MONOGRAPH LUTATHERA ® [Electronic resource] // Toxicology. 2010. P. 1–55. URL: https://www.samnordic.se/wp-content/uploads/ 2018/05/LUTATHERA-MONOGRAPH-120218.pdf.
- Dosing & Administration I PLUVICTO [Electronic resource]. URL: https://www.hcp.novartis.com/products/pluvicto/psma-positive-mcrpc/dosing-and-administration/ (accessed: 01.08.2022).
- LnHB. Nuclear data – Laboratoire National Henri Becquerel [Electronic resource]. URL: http://www.lnhb.fr/nuclear-data/nuclear-data-table/ (accessed: 14.08.2022).
- de Zanger R.M.S., Chan H.S., Breeman W.A.P., de Blois E. // J. Radioanal. Nucl. Chem. Springer International Publishing, 2019. V. 321. № 1. P. 285–291. https://doi.org/10.1007/s10967-019-06573-y
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





