Study of the structure and properties of aluminum-matrix composites based on technical aluminum, reinforced with multi-walled carbon nanotubes
- Autores: Shirinkina I.G.1, Brodova I.G.1, Astafyev V.V.1, Tolochko B.P.2, Kuznetsov V.A.2, Zhdanok A.A.2, Korotayeva Z.A.2, Razorenov S.V.3, Savinykh A.S.3, Garkucshin G.V.3, Shorokhov E.V.4
-
Afiliações:
- Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences
- Institute of Solid State Chemistry and Mechanochemistry SB RAS
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
- Russian Federal Nuclear Center — Zababakhin All-Russian Research Institute of Technical Physics
- Edição: Volume 126, Nº 5 (2025)
- Páginas: 629-640
- Seção: ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ
- URL: https://cijournal.ru/0015-3230/article/view/690800
- DOI: https://doi.org/10.31857/S0015323025050126
- EDN: https://elibrary.ru/vebfxn
- ID: 690800
Citar
Texto integral



Resumo
Alumina-matrix composites reinforced with multi-walled carbon nanotubes (MWCNTs) in the cast state were obtained by introducing powders of different compositions containing MWCNTs, Cu and/or Mg metals, and SiC ceramic particles into the Al melt. The structure of the composites was studied using light and scanning electron microscopy. It was found that the powder composition affects the effect of modifying the structure of aluminum matrix composites. The most dispersed structure (grain size 200 μm) is found in composites reinforced with MWCNTs with a microadditive of Mg. The hardness and mechanical properties of the composites were measured in a wide range of deformation rates (έ = 10–2 – 105 s–1). Experiments on loading aluminum matrix composites with plane shock waves were performed for the first time. From these data it follows that with an increase in the deformation rate, a gradual increase in the yield strength of composites up to 100 MPa is observed. A comparison of the strength characteristics of aluminum matrix composites with the corresponding characteristics of unreinforced Al shows that the strengthening effect of MWCNTs is more pronounced at higher deformation rates and reaches 60% at the maximum deformation rate.
Palavras-chave
Sobre autores
I. Shirinkina
Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences
Email: shirinkina@imp.uran.ru
Ekaterinburg, 620990 Russia
I. Brodova
Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences
Email: shirinkina@imp.uran.ru
Rússia, Ekaterinburg, 620990 Russia
V. Astafyev
Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences
Email: shirinkina@imp.uran.ru
Rússia, Ekaterinburg, 620990 Russia
B. Tolochko
Institute of Solid State Chemistry and Mechanochemistry SB RAS
Email: shirinkina@imp.uran.ru
Rússia, Novosibirsk, 630090 Russia
V. Kuznetsov
Institute of Solid State Chemistry and Mechanochemistry SB RAS
Email: shirinkina@imp.uran.ru
Rússia, Novosibirsk, 630090 Russia
A. Zhdanok
Institute of Solid State Chemistry and Mechanochemistry SB RAS
Email: shirinkina@imp.uran.ru
Rússia, Novosibirsk, 630090 Russia
Z. Korotayeva
Institute of Solid State Chemistry and Mechanochemistry SB RAS
Email: shirinkina@imp.uran.ru
Rússia, Novosibirsk, 630090 Russia
S. Razorenov
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: shirinkina@imp.uran.ru
Rússia, Chernogolovka, 142432 Russia
A. Savinykh
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: shirinkina@imp.uran.ru
Rússia, Chernogolovka, 142432 Russia
G. Garkucshin
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: shirinkina@imp.uran.ru
Rússia, Chernogolovka, 142432 Russia
E. Shorokhov
Russian Federal Nuclear Center — Zababakhin All-Russian Research Institute of Technical Physics
Autor responsável pela correspondência
Email: shirinkina@imp.uran.ru
Rússia, Snezhinsk, Chelyabinsk Region, 456770 Russia
Bibliografia
- Khrustalyov A.P., Kozulin A.A., Zhukov I.A., Khmeleva M.G., Vorozhtsov A.B., Eskin D.G., Chankitmunkong S., Platov V.V., Vasilev S.V. Influence of Titanium Diboride Particle Size on Structure and Mechanical Properties of an Al-Mg Alloy // Metals. 2019. V. 9. Р. 1030-1–1030-14.
- Bakshi S.R., Lahiri D., Agarwal A. Carbon nanotube reinforced metal matrix composites — a review // Intern. Mater. Rev. 2010. V. 55. Р. 41–64.
- Das D.K., Mishra P.C., Singh S., Thakur R.K. Properties of ceramic-reinforced aluminium matrix composites — a review // Int. J. Mech. Mater. Eng. 2014. V. 9. P. 12.
- Ci L., Ryu Z., Jin-Phillipp N.Y., Rühle M. Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum // Acta Mater. 2006. V. 54. Р. 5367–5375.
- Pérez-Bustamante R., Pérez-Bustamante F., Estrada-Guel I., Santillán-Rodríguez C.R., Matutes-Aquino J.A., Herrera-Ramírez J.M. Characterization of Al2024-CNTs composites produced by mechanical alloying // Powder Technology. 2011. V. 212. Р. 390–396.
- Srivyasa P.D., Charoo M.S. Role of fabrication route on the mechanical and tribological behavior of aluminum metal matrix composites — A review // Mater. Today: Proc. 2018. V. 5. P. 20054–20069.
- Surappa M.K. Aluminium matrix composites: Challenges and opportunities // Sadhana. 2003. V. 28. No. 1–2. P. 319–334.
- Adebisi A.A. Metal matrix composite brake rotor: historical development and product life cycle analysis // Int. J. Autom. Mech. Eng. 2011. V. 4. Р. 471–480.
- Kainer K.U. Metal matrix composites. Custom-made materials for automotive and aerospace engineering. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2006.
- Шейнерман А.Г. Механические свойства металломатричных композитов с графеном и углеродными нанотрубками // ФММ. 2022. Т. 123. № 1. С. 63–92.
- Phuong D.D., Trinh P.V., An N.V., Luan N.V., Minh Ph.N., Khisamov R.Kh., Nazarov K.S., Zubairov L.R., Mulyukov R.R., Nazarov A.A. Effects of carbon nanotube content and annealing temperature on the hardness of CNT reinforced aluminum nanocomposites processed by the high pressure torsion technique // J. Alloys Compounds. 2014. V. 613. Р. 68–73.
- Алексеев А.В., Есиков М.А., Мали В.И. Влияние добавок углеродных нанотрубок и оксидных нановолокон на механические свойства композита на основе алюминия // Журнал Сибирского федерального ун-та. Серия: Техника и технологии. 2019. Т. 12. № 4. С. 416–426.
- Jin-zhi Liao, Ming-Jen Tan, Idapalapati Sridhar. Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites // Mater. & Design. 2010. V. 31. Р. 96–100.
- Cavaliere P., Sadeghi B., and Shabani A. Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering // J. Mater. Sci. 2017. V. 52. No. 14. Р. 8618–8629.
- Bunakov N.A., Kozlov D.V., Golovanov V.N., Klimov E.S., Grebchuk E.E., Efimov M.S., Kostishko B.B. Fabrication of multi-walled carbon nanotubes–aluminum matrix composite by powder metallurgy technique // Results in Physics. 2016. V. 6. Р. 231–232.
- Hansang Kwon, Gil-Geun Lee, Sung-Gyoo Kim, Byung-Woo Lee, Won-Chan Seo, Marc Leparoux. Mechanical properties of nanodiamond and multi-walled carbon nanotubes dualreinforced aluminum matrix composite materials // Mater. Sci. Eng.: A. 2015. V. 632. Р. 72–77.
- Marini Danilo, Genova Virgilio, Marra Francesco, Pulci Giovanni, Valente Marco. Mechanical Behaviour with Temperatures of Aluminum Matrix Composites with CNTs // Chem. Eng. Trans. 2017. V. 60. Р. 25–30.
- Abedi M., Moskovskikh D., Romanovski V., Ozherelkov D., Gromov A. Unlocking the potential of graphene-reinforced AlSi10Mg nanocomposites in laser powder bed fusion: A comprehensive review // J. Alloys Compounds. 2024. V. 978. 173441.
- Ozherelkov D.Y., Pelevin I.A., Nalivaiko A.Yu., Zotov O.B., Fedorenko L.V. and Gromov A.A. Use of Carbon Nanofibers in the Additive Manufacturing of Aluminum Matrix Composites // Russ. Metall. (Metally). 2024. V. 2023. Iss. 10. Р. 1374–1381.
- Wang Lin-zhi., Chen Tian, Wang Sen. Microstructural characteristics and mechanical properties of carbon nanotube reinforced AlSi10Mg composites fabricated by selective laser melting // Optik. 2017. V. 143. Р. 173–179.
- Gu D., Rao X., Dai D., Ma C., Xi L., Lin K. Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: Processing optimization, microstructure evolution and mechanical properties // Additive Manufacturing. 2019. V. 29. Р. 100801.
- Chen X., Qian F., Bai X., Zhao D., Zhang X., Li J., He C., Shi C., Tao J., Zhao N. Formation of the orientation relationship-dependent interfacial carbide in Al matrix composite affected by architectured carbon nanotube // Acta Mater. 2022. V. 228. Р. 117758.
- Aborkin A.V., Elkin A.I., Reshetniak V.V., Ob’edkov A.M., Sytchev A.E., Leontiev V.G., Titov D.D., Alymov M.I. Thermal expansion of aluminum matrix composites reinforced by carbon nanotubes with in-situ and ex-situ designed interfaces ceramics layers //J. Alloys Compounds. 2021. V. 872. P. 159593.
- Aborkin A.V., Khorkov K.S., Prusov E.S., Ob’edkov A.M., Kremlev K.V., Perezhogin I.A., Alymov M.I. Effect of Increasing the Strength of Aluminum Matrix Nanocomposites Reinforced with Microadditions of Multiwalled Carbon Nanotubes Coated with TiC Nanoparticles // Nanomaterials. 2019. V. 9. № 11. P. 1596.
- Aborkin A.V., Babin D.M., Zalesnov A.I., Prusov E.S., Ob’edkov A.M., Alymov M.I. Effect of ceramic coating on carbon nanotubes interaction with matrix material and mechanical properties of aluminum matrix nanocomposite // Ceramics International. 2020. V. 46. P. 19256–19263.
- Guo B., Chen Y., Wang Z., Yi J., Ni S., Du Y., Li W., Song M. Enhancement of strength and ductility by interfacial nano-decoration in carbon nanotube/aluminum matrix composites // Carbon. 2020. V. 159. P. 201–212.
- So K.P., Jeong J.C., Park J.G., Park H.K., Choi Y.H., Noh D.H., Keum D.H., Jeong H.Y., Biswas C., Hong C.H., Lee Y.H. SiC formation on carbon nanotube surface for improving wettability with aluminum // Comp. Sci. Techn. 2013. V. 74. P. 6–13.
- Guo B., Luo S., Wu Y., Song M., Chen B., Yu Z., Li W. Regulating the interfacial reaction between carbon nanotubes and aluminum via copper nano decoration // Mater. Sci. Eng.: A. 2021. V. 820. P. 141576.
- Dong H. Nam, Seung I. Cha, Byung K. Lim, Hoon M. Park, Do S. Han, Soon H. Hong. Synergistic strengthening by load transfer mechanism and grain refinement оf CNT/Al–Cu composites // Carbon. 2012. V. 50. № 7. Р. 2417–2423.
- Крушенко Г.Г., Черепанов А.Н., Полубояров В.А., Кузнецов В.А. Влияние нанопорошков тугоплавких материалов на свойства литых изделий из черных и цветных металлов и сплавов // Наука производству. 2003. № 4. С. 29–36.
- Крушенко Г.Г., Черепанов А.Н., Полубояров В.А., Кузнецов В.А. Повышение качества металлов и сплавов с помощью нанопорошков тугоплавких химических соединений // Изв. ВУЗов. Черная металлургия. 2003. № 4. С. 36–41.
- Степанова Н.В., Кузнецов В.А., Малютина Ю.Н., Терентьев Д.С., Ложкин В.С., Разумаков А.А. Структура и механические свойства серого чугуна, модифицированного механоактивированной смесью карбида вольфрама и хрома / Обработка металлов: технология, оборудование, инструменты. 2013. № 3. С. 121–126.
- Черепанов А.Н., Кузнецов А.В., Кузнецов В.А. Влияние ультрадиперсных тугоплавких соединений на структуру и свойства литой меди // Тез. Докл. III Всерос. Конф. Молодых ученых “Проблемы механики: теория, эксперимент и новые технологии”, 19–21 ноября 2003 г. ИТПМ СО РАН. Новосибирск. 2003. С. 67–68.
- Огнев А.Ю., Базаркина В.В., Батаев И.А., Батаев В.А. Алюминиевый композиционный материал с нанодисперсной упрочняющей фазой, сформированный аккумулированной прокаткой // Обработка металлов. 2011. T. 3 (52). С. 40–42.
- Эллиот Р. Управление эвтектическим затвердеванием. М.: Металлургия, 1987. 348 с.
- Brodova I., Yolshina L., Razorenov S., Rasposienko D., Petrova A., Shirinkina I., Shorokhov E., Muradymov R., Garkushin G., Savinykh A. Effect of Grain Size on the Properties of Aluminum Matrix Composites with Graphene // Metals. 2022. V. 12. Р. 1054.
- Chu K., Jia C. Enhanced strength in bulk graphenecopper composites // Phys. Status Solidi A. 2014. V. 211. P. 184–190.
- Brodova I.G., Zel’dovich V.I., Khomskaya I.V. Phase-Structural Transformations and Properties of Non-Ferrous Metals and Alloys under Extreme Conditions // Physics of Metals and Metallography. 2020. V. 121. № 7. Р. 631–663.
- Brodova I.G., Petrova A.N., Muradymov R.V., Shirinkina I.G., Razorenov S.V., Rasposienko D.Yu., Shorokhov E.V. Mechanical properties of submicrocrystalline aluminium matrix composites reinforced by “in situ” graphene through severe plastic deformation processes // J. Alloys Compounds. 2021. V. 859. Р. 158387.
- Razorenov S.V., Garkushin G.N. Hardening of metals and alloys during shock compression // Tech. Phys. 2015. V. 60. Р. 1021–1026.
- Razorenov S.V. Influence of structural factors on the strength properties of aluminum alloys under shock wave loading // Matter Radiat. Extrem. 2018. V. 3. Р. 1–54.
- Гаркушин Г.В., Канель Г.И., Разоренов С.В. Сопротивление деформированию и разрушению алюминия AD1 в условиях ударно-волнового нагружения при температурах 20 и 6000С // ФТТ. 2010. Т. 52. Вып. 11. Р. 2216–2222.
- Brodova I.G., Yolshina L.A., Rasposienko D.Yu., Muradymov R.V., Shirinkina I.G., Razorenov S.V., Petrova А.N., Shorokhov Е.V. Structure formation and physical-mechanical properties of Al-Mg alloy with microadditions of graphene Structure formation and physical-mechanical properties of Al-Mg alloy with microadditions of graphene // Letters on Mater. 2022. V. 12. № 4. Р. 269–275.
Arquivos suplementares
