Approach to low-frequency magnetic field measurements using permalloy-based magnetoplasmonic crystal

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper demonstrates the use of a one-dimensional magnetoplasmonic crystal based on Ni80Fe20 permalloy as a sensitive probe of a magneto-optical sensor for low-frequency AC field measurements. The sensitivity of the sensor reaches 30 mOe when operating in the frequency range from 0.1 to 100 Hz. In the course of the work, an assessment was made of the applicability of the developed sensor for measuring magnetic fields of biological objects that were subjected to electrical stimulation.

Texto integral

Acesso é fechado

Sobre autores

V. Belyaev

Immanuel Kant Baltic Federal University

Autor responsável pela correspondência
Email: vbelyaev@kantiana.ru
Rússia, Kaliningrad, 236041

S. Pshenichnikov

Immanuel Kant Baltic Federal University

Email: vbelyaev@kantiana.ru
Rússia, Kaliningrad, 236041

A. Andryukov

Immanuel Kant Baltic Federal University

Email: vbelyaev@kantiana.ru
Rússia, Kaliningrad, 236041

D. Murzin

Immanuel Kant Baltic Federal University

Email: vbelyaev@kantiana.ru
Rússia, Kaliningrad, 236041

L. Panina

Immanuel Kant Baltic Federal University; National Research Technological University MISiS

Email: vbelyaev@kantiana.ru
Rússia, Kaliningrad, 236041; Moscow, 119049

E. Levada

Immanuel Kant Baltic Federal University

Email: vbelyaev@kantiana.ru
Rússia, Kaliningrad, 236041

V. Rodionova

Immanuel Kant Baltic Federal University

Email: vbelyaev@kantiana.ru
Rússia, Kaliningrad, 236041

Bibliografia

  1. Grosz A., Haji-Sheikh M.J., Mukhopadhyay S.C. High sensitivity magnetometers. Switzerland: Springer, 2017. C. 576.
  2. Murzin D., Mapps D.J., Levada K. Belyaev V., Omelyanchik A., Panina L., Rodionova V. Ultrasensitive magnetic field sensors for biomedical applications // Sensors. 2020. V. 20. No. 6. P. 1569.
  3. Fabricant A., Novikova I., Bison G. How to build a magnetometer with thermal atomic vapor: a tutorial // New J. Phys. 2023. V. 25. No. 2. P. 025001.
  4. Aslam N., Zhou H., Urbach E.K., Turner M.J., Walsworth R.L., Lukin M.D., Park H. Quantum sensors for biomedical applications // Nature Rev. Phys. 2023. V. 5. No. 3. P. 157–169.
  5. Rizal C., Manera M.G., Ignatyeva D.O., Mejía-Salazar J.R., Rella R., Belotelov V.I., Pineider F., Maccaferri N. Magnetophotonics for sensing and magnetometry toward industrial applications // J. Appl. Phys. 2021. V. 130. No. 23.
  6. Rogachev A.E., Vetoshko P.M., Gusev N.A., Kozhaev M.A., Prokopov A.R., Popov V.V., Dodonov D.V., Shumilov A.G., Shaposhnikov A.N., Berzhansky V.N., Zvezdin A.K. Vector magneto-optical sensor based on transparent magnetic films with cubic crystallographic symmetry // Appl. Phys. Letters. 2016. V. 109. No. 16.
  7. Dorosinskiy L., Sievers S. Magneto-Optical Indicator Films: Fabrication, Principles of Operation, Calibration, and Applications // Sensors. 2023. V. 23. No. 8. P. 4048.
  8. Belotelov V.I., Akimov I.A., Pohl M., Kotov V.A., Kasture S., Vengurlekar A.S., Gopal A.V., Yakovlev D.R., Zvezdin A.K., Bayer M. Enhanced magneto-optical effects in magnetoplasmonic crystals // Nature nanotechn. 2016. V. 6. No. 6. P. 370–376.
  9. Kiryanov M.A., Frolov A.Y., Novikov I.A., Kipp P.A., Nurgalieva P.K., Popov V.V., Ezhov A.A., Dolgova T.V., Fedyanin A.A. Surface profile-tailored magneto-optics in magnetoplasmonic crystals // APL Photonics. 2022. V. 7. No. 2.
  10. Murzin D.V., Belyaev V.K., Gritsenko K.A., Rodionova V.V. Effect of Filling Factor on the Coefficient of Reflection and Transversal Kerr Effect of 2D Permalloy-Based Magnetoplasmonic Crystals // Bulletin of the Russian Academy of Sciences: Physics. 2024. V. 88. No. 4. P. 591–596.
  11. Zayats A.V., Smolyaninov I.I. Near-field photonics: surface plasmon polaritons and localized surface plasmons // J. Optics A: Pure and App. Optics. 2003. V. 5. No. 4. P. S16.
  12. Belyaev V.K., Rodionova V.V., Grunin A.A., Inoue M., Fedyanin A.A. Magnetic field sensor based on magnetoplasmonic crystal // Sci. Rep. 2020. V. 10. No. 1. P. 7133.
  13. Murzin D.V., Belyaev V.K., Mamian K.A., Groß F., Gräfe J., Frolov A.Y., Fedyanin A.A., Rodionova V.V. Ni80Fe20 Thickness Optimization of Magnetoplasmonic Crystals for Magnetic Field Sensing // Sensors and Actuators A: Physical. 2024. V. 376. P. 115552.
  14. Knyazev G.A., Kapralov P.O., Gusev N.A., Kalish A.N., Vetoshko P.M., Dagesyan S.A., Shaposhnikov A.N., Prokopov A.R., Berzhansky V.N., Zvezdin A.K., Belotelov V.I. Magnetoplasmonic crystals for highly sensitive magnetometry // ACS Photonics. 2018. V. 5. No. 12. P. 4951–4959.
  15. Пахотин В.А., Бессонов В.А., Молостова С.В., Власова К.В. Теоретические основы оптимальной обработки сигналов: курс лекций для радиофизических специальностей. Калининград: РГУ им. И. Канта, 2008. C. 189.
  16. Аббасова К.Р., Богачева П.О., Васильев А.Н. и др. Руководство к практическим занятиям по физиологии человека и животных / учебно-методическое пособие для студентов 3-го курса биологического факультета МГУ имени М. В. Ломоносова, обучающихся по программе бакалавриата. Москва: Товарищество науч. изд. КМК. C. 277.
  17. Zhu K., Kiourti A. A review of magnetic field emissions from the human body: Sources, sensors, and uses // IEEE Open Journal of Antennas and Propagation. 2022. V. 3. P. 732–744.
  18. Roth B.J. Biomagnetism: the first sixty years // Sensors. 2023. V. 23. No. 9. P. 4218.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic diagram of the alternating magnetic field sensor based on the MPLC: 1 – laser diode; 2 – p-polarizer; 3 – MPLC; 4 – surface plasmon-polariton; 5 – silicon photodiode; 6 – synchronous amplifier. Hext – modulating alternating magnetic field, Hsig – alternating magnetic field created by the measured object, for example, a multi-core wire connected to an alternating voltage source Usig.

Baixar (46KB)
3. Fig. 2. Schematic diagram of the experimental bath for recording the electrical activity of samples (a) with the test sample and (b) with filter paper: 1 – neuromuscular preparation; 2 – filter paper moistened with Ringer’s solution; 3 – stimulating electrodes; 4 – reading electrodes. The graphic diagrams from the Lt LabStation 1.8.3 ADInstruments LTd program were used as a basis for the images.

Baixar (141KB)
4. Fig. 3. (a) The MOsig(Hext) dependence, which shows the position of Hmod determined by the maximum approximated Langevin function ∂MOsig/∂Hext; (b) the values ​​of MOsig(H=Hmod), measured at tс values ​​from 3000 to 3 ms.

Baixar (200KB)
5. Fig. 4. Examples of measured (black lines with dots) and reconstructed (red lines) signals. Parameters Hsig: (a) rectangular signal, frequency 0.1 Hz, tc = 300 ms; (b) sinusoidal signal, frequency 1 Hz, tc = 100 ms; (c) sinusoidal signal, frequency 1 Hz, tc = 0.3 ms. The values ​​of ν, φ0, Δmin/N reconstructed by the FP minimization method are shown in the corresponding graphs.

Baixar (586KB)
6. Fig. 5. Induction of action potential (CAP) in isolated frog sciatic nerve after stimulation with an electrical impulse (Stimulus).

Baixar (66KB)