COMPARATIVE ANALYSIS OF THERMAL STABILITY OF AMORPHOUS STRUCTURE IN Fe40Ni40P14B6 AND Fe48Co32P14B6 METALLIC GLASSES
- Authors: Sviridova E.A.1,2, Vasiliev S.V.1,2, Tkatch V.I.1
-
Affiliations:
- Galkin Donetsk Institute for Physics and Engineering
- Donbass National Academy of Civil Engineering and Architecture
- Issue: Vol 126, No 5 (2025)
- Pages: 575-588
- Section: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://cijournal.ru/0015-3230/article/view/690795
- DOI: https://doi.org/10.31857/S0015323025050075
- EDN: https://elibrary.ru/vdilzc
- ID: 690795
Cite item
Abstract
Crystallization kinetics of Fe40Ni40P14B6 and Fe48Co32P14B6 glasses at isothermal conditions was investigated in the temperature ranges of 617–662 and 683–714 K, respectively. The onset crystallization times were used as indicators of thermal stability. The transient behavior of crystal nucleation was established in the framework of the Kolmogorov–Johnson–Mehl–Avrami model and the combined Kolmogorov–Kashchiev model and both the degrees of non-stationarity and the times characterizing crystallization kinetics at steady-state and transient nucleation were determined. The temperature dependencies of the effective diffusivity governing transfer atoms across the interfaces and steady-state nucleation rates were calculated using the characteristic steady-state crystallization times and values of the crystal growth rates known from the literature. From these data the temperature dependencies of both the work of critical nucleation formation and the specific free energy of nucleus/matrix interface were found in the framework of the classical equation of homogeneous nucleation rate. From comparison between the experimentally measured and calculated for steady-state nucleation onset crystallization times it was established that the enhanced thermal stability of Fe48Co32P14B6 compared with that of Fe40Ni40P14B6 was caused by the lowered diffusion mobility and the higher degree of deviation of nucleation rate from its steady-state value.
About the authors
E. A. Sviridova
Galkin Donetsk Institute for Physics and Engineering; Donbass National Academy of Civil Engineering and Architecture
Email: ksvir@list.ru
Donetsk, 283048 Russia; Makeevka, 286123 Russia
S. V. Vasiliev
Galkin Donetsk Institute for Physics and Engineering; Donbass National Academy of Civil Engineering and Architecture
Email: ksvir@list.ru
Russian Federation, Donetsk, 283048 Russia; Makeevka, 286123 Russia
V. I. Tkatch
Galkin Donetsk Institute for Physics and Engineering
Author for correspondence.
Email: ksvir@list.ru
Russian Federation, Donetsk, 283048 Russia
References
- Скрипов В.П., Коверда В.П. Спонтанная кристаллизация переохлажденных жидкостей. М.: Наука, 1984. 232 с.
- Кёстер У., Герольд У. Кристаллизация металлических стекол / В кн. Металлические стекла. М.: Мир, 1983. С. 325–371.
- Скотт М.Г. Кристаллизация / В кн. Аморфные металлические сплавы. Под ред. Ф. Е. Люборского. М.: Металлургия, 1987. С. 137–164.
- Kelton K.F. Crystal nucleation in liquids and glasses // Solid State Phys. Advances Research Appl. New York: Acad. Press, 1991. V. 45. P. 75–177.
- Fokin V.M., Zanotto E.D., Yuritsyn N.S., Schmelzer J.W.P. Homogeneous crystal nucleation in silicate glasses: A 40 years perspective // J. Non-Cryst. Sol. 2006. V. 352. P. 2681–2714.
- Kelton K.F., Greer A.L. Nucleation in Condensed Matter, Applications in Materials and Biology. Oxford: Elsevier, 2010.
- Кристиан Дж. Теория превращений в металлах и сплавах. Ч. 1. М.: Мир, 1978. 806 с.
- Tiwari R.S. Analysis of steady state crystal nucleation in Metglas 2826 // J. Non-Cryst. Sol. 1986. V. 83. P. 126–133.
- Popov V.V., Tkatch V.I., Rassolov S.G., Aronin A.S. Effect of replacement of Ni by Co on thermal stability of Fe40Co40P14B6 metallic glass // J. Non-Cryst. Sol. 2010. V. 356. P. 1344–1348.
- Tkatch V.I., Vasiliev S.V., Svyrydova K.A. Identification of the onset crystallization time in metallic glasses at isothermal conditions // J. Non-Cryst. Sol. 2017. V. 463. P. 102–107.
- Колмогоров А.Н. К статистической теории кристаллизации металлов // Изв. АН СССР. Сер. Матем. 1937. № 3. C. 355–360.
- Johnson W.A., Mehl R.E. Reaction kinetics in processes of nucleation and growth // Trans. Amer. Inst. Min. Met. 1939. V. 135. P. 416–434.
- Avrami M. Kinetics of phase change I. General theory // J. Chem. Phys. 1939. V. 7. No. 12. P. 1103–1112.
- Vasiliev S.V., Parfenii V.I., Tkatch V.I. A comparison of the transient behavior of nucleation in Fe40Co40P14B6 and Fe40Ni40P14B6 metallic glasses // J. Alloys Compd. 2020. V. 824. 153926.
- Kashchiev D. Solution of the non-steady state problem in nucleation kinetics // Surface Sci. 1969. V. 14. No. 1. P. 209–220.
- Thompson C.V., Greer A.L., Spaepen F. Crystal nucleation in amorphous (Au100-yCuy)77Si9 Ge14 alloys // Acta Metal. 1983. V. 31. No. 11. P. 1883–1894.
- Васильев С.В., Ткач В.И., Свиридова Е.А., Лимановский А.И., Цветков Т.В. Анализ нестационарного характера изотермического процесса зарождения кристаллов в металлических стеклах // Физ. техн. выс. давл. 2017. T. 27. № 1. C. 63–76.
- Vasiliev S.V., Tkatch V.I., Aronin A.S., Kovalenko O.V., Rassolov S.G. Analysis of the transient behavior of nucleation in the Fe40Ni40P14B6 glass // J. Alloys Compds. 2018. V. 744. P. 141–145.
- Васильев С.В., Парфений В.И., Першина Е.А., Аронин А.С., Коваленко О.В., Ткач В.И. Эффективные коэффициенты диффузии и термическая устойчивость структуры металлического стекла Fe48Co32P14B6 // ФTT. 2020. T. 62. № 12. C. 2012–2019.
- Vasiliev S.V., Parfenii V.I., Aronin A.S., Pershina E.A., Tkatch V.I. The effect of transient nucleation behavior on thermal stability of Fe48Co32P14B6 metallic glass // J. Alloys Compds. 2021. V. 869. 159285.
- Metglass Alloy 2826 / Alloy Digest. 1976. Nov. P. 4–5.
- Tkatch V.I., Rassolov S.G., Popov V.V., Kameneva V.Yu., Petrenko O.A. Thermal stability and saturation magnetization of a new series of amorphous Fe80-xCoxP14B6 (20 ≤ x < 40) alloys // Mater. Lett. 2004. V. 58. P. 2988–2992.
- Morris D.G. Crystallization of the Metglas 2826 amorphous alloy // Acta Metal. 1981. V. 29. P. 1213–1220.
- Morris D.G. Early crystallization behaviour of an amorphous metal alloy // Scripta Metallurg. 1982. V. 16. P. 585–588.
- Limoge Y., Barbu A. Cinetique et mecanisme de cristallsation par decomposition eutectique d’un alliage metallique amorphe: le systeme Fe40Ni40P14B6 // Acta Metal. 1982. V. 30. No. 12. P. 2233–2243.
- Васильев С.В. Анализ математических моделей, описывающих нестационарный характер зарождения кристаллов в стеклах // Физ. техн. выс. давл. 2020. T. 30. № 4. C. 1–15.
- Kashchiev D. Nucleation. Basic theory with applications. Barlington. MA: Butterworth-Heinemann, 2000. 529 p.
- Turnbull D., Fisher J.C. Rate of nucleation in condensed systems // J. Chem. Phys. 1949. V. 17. No. 1. P. 71–73.
- Набережных В.П., Ткач В.И., Лимановский А.И., Каменева В.Ю. Кристаллизация аморфного сплава Fe80B20 при нагреве с постоянной скоростью // ФMM. 1991. T. 71. № 2. C. 157–164.
- Herlach D.M., Palberg T., Klassen I., Klein S., Kobold R. Overview: Experimental studies of crystal nucleation: Metals and colloids // J. Chem. Phys. 2016. V. 145. 211703.
- Thompson C.V., Spaepen F. On the approximation of the free energy change on crystallization // Acta Metal. 1979. V. 22. No. 12. Р. 1855–1859.
- Senkov O.N., Miracle D.B., Mullens H.M. Topological criteria for amorphization based on a thermodynamic approach // J. Appl. Phys. 2005. V. 97. 103502.
- Ткач В.И., Свиридова Е.А., Васильев С.В., Коваленко О.В. Связь между структурными параметрами металлических стекол при температурах начала кристаллизации и пороговыми значениями эффективных коэффициентов диффузии // ФММ. 2017. Т. 118. № 8. С. 806–814.
- Vasiliev S.V., Svyrydova K.A., Vasylyeva N.V., Tkatch V.I. Description of non-isothermal crystallization kinetics of Fe48Co32P14B6 metallic glass using the isothermal analysis data // Acta Mater. 2023. V. 244. 118558.
- Kelton K.F., Spaepen F. A study of the devitrification of Pd82Si18 over a wide temperature range // Acta Metal. 1985. V. 33. No. 3. P. 455–464.
- Mathot V.B.F. Thermal analysis and calorimetry beyond 2000: challenges and new routes // Thermochim. Acta. 2000. V. 355. P. 1–33.
- Turnbull D. Formation of crystal nuclei in liquid metals // J. Appl. Phys. 1950. V. 21. No. 10. P. 1022–1028.
- Tkatch V.I. Determination of temperature dependence of the nucleus-melt interfacial tension for Fe40Ni40P14B6 alloy // Int. J. Non-Equilibr. Processing. 1998. V. 10. P. 339–352.
- Battezzati L. Thermodynamic quantities in nucleation // Mater. Sci. Eng. A. 2001. V. 304–306. P. 103–107.
Supplementary files
